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Executive summary 

1. Aims and objectives: A comprehensive review of the literature is provided which offers a 

critical analysis of data pertaining to how fetal programming and epigenetics influence 

contemporary beef and sheep production traits. In places the review draws heavily on 

knowledge and experience gained from a wide variety of species but, in particular, rodents and 

humans where the majority of data resides.  

 

In this article we provide: 

a. An assessment of possible risk factors and likely exposures affecting beef and sheep 

production 

b. Evidence of the extent to which commercially important traits are affected 

c. An analysis of effects of specific environmental factors (e.g. parental diet, maternal 

stress) 

d. A comprehensive overview of epigenetic mechanisms and their role in fetal programming 

of subsequent development and health 

e. Key industry ‘take-home’ messages 

f. A list of future research needs 

 

2. Overview of document: The article is divided into 7 sections which provide detailed overviews 

of (i) the general field of developmental programing, (ii) epigenetics and its role in long-term 

development, (iii) programming of health and wellbeing, (iv) programming of body composition, 

(v) programming of fertility, (vi)   impact of advanced reproductive technologies and (vii) industry 

relevance and recommendations.     

 

3. Context: Although it has been known for some 70 or so years that fetal development can have 

a lifelong impact on offspring growth, it is only since the 1980s that the extent and impact of 

prenatal exposure to malnutrition or stress on adult health and disease became fully 

appreciated. This was first identified through human cohort studies (such as those investigated 

by Barker or the Dutch ‘Hunger Winter’ studies), and was subsequently explored in detail in 

rodent models. The relatively recent discovery that some of these effects are present not only 

in offspring of the mother that experienced the dietary or stressful event but also in her grand-

offspring, generated a great deal of interest concerning the mechanisms of inheritance.   

 

4. General issues: Research in this area currently follows three lines of enquiry: (i) investigations 

(mostly in rodents) into the mechanisms (including epigenetic) by which in utero environmental 

impacts arise, and whether these effects can be reversed; (ii) studies of the longer term 

consequences of various forms of prenatal insult (generally in humans and rodents) directed 

towards non-communicable diseases and offspring behaviour, and (iii) theoretical 

considerations relating to the evolutionary nature of these mechanisms. This review focuses 

on research concerning the first two of these issues. It is noteworthy that the vast majority of 

studies which have investigated this phenomenon have tended to focus on the long-term 

consequences of negative environmental factors such as malnutrition and maternal stress.    

 

5. Epigenetics: Every cell within the body retains a copy of the entire genetic code (i.e. the whole 

genome) of the organism, although not all this information is utilised by every cell. Different cell 

types are ‘programmed’ to use the genetic code selectively to achieve their functions. This cell-

type specific ‘programming’ is established during normal development and involves epigenetic 

mechanisms. Epigenetic processes allow gene expression patterns to differ between cells 
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without alterations or mutations to the underlying DNA. Epigenetics can thus be described as: 

“the study of mitotically and/or meiotically heritable changes in gene function that are not 

explained by changes in DNA sequence”. Patterns of gene expression can be inherited across 

many cell cycles, with adult tissues carrying the ‘memories’ of ‘modified genes’ from embryonic 

development; or even from previous generations. Two classic memory systems exist in 

mammals that are based on epigenetic programming of the genome: (i) DNA methylation and 

(ii) associated higher-order chromatin & histone modifications. A detailed overview of our 

contemporary understanding of these mechanisms and others is provided in Section 2. 

 

6. Stage of pregnancy: In recent times cohort studies in humans have tended to focus on early 

gestation, including the peri-conceptional period, which is a time when the mammalian genome 

is most sensitive to epigenetic modifications. In studies with ruminants, moderately severe 

undernutrition up to 30 days after mating does not affect birth weight or growth rate but 

produces offspring that show symptoms of ‘metabolic syndrome’ (e.g. hypertension, insulin 

resistance). In some studies with sheep offspring also have behavioural disturbances and 

reduced survivability. In contrast, mild undernutrition during this period is associated with 

increased placental development and enhanced embryo survival. Poor nutrition in late 

gestation is reliably associated with reduced birth weights which, through impacts on offspring 

behaviour, thermoregulation and body reserves are associated with increased mortality. 

Shearing the housed pregnant ewe increases lamb birth weight by increasing dietary intakes, 

although improved lamb survival and post-natal growth rates are not always evident. The 

impact of gestational nutrition on calf weight has been less convincingly demonstrated. 

However, calf weight is reduced when cows experience either heat or cold stress which, in the 

case of heat stress, may be associated with reduced feed intakes. In addition, birth weight is 

reduced in cases where mothers experienced ill health (of various forms) during pregnancy.  

 

7. Stress during pregnancy: Pregnant farm animals may be exposed to many factors that can 

elicit physiological stress responses (e.g. transport, human contact, predators, housing). In 

pregnant rodents and humans these exposures are known to cause permanent and long lasting 

impacts on the developing offspring, particularly influencing behaviour, and stress reactivity. 

Very few studies have considered the impact of stress during pregnancy on offspring responses 

in cattle and sheep. In general, studies suggest that offspring behaviour is altered by exposure 

of the mother to stressful events, particularly if this occurs during early to mid-pregnancy; and 

that male offspring are more affected than females. Somewhat paradoxically, exposure to 

stress during late pregnancy may have positive impacts such as increasing offspring birth 

weight.  

 

8. Immunity: As the immune system develops largely in utero in farm livestock, immune function 

is likely to be susceptible to the effects of the maternal environment. In lambs the absorption of 

immunoglobulins from colostrum is affected by maternal intake of micronutrients (e.g. cobalt, 

vitamin E) as well as macronutrients (e.g. protein). A recent and largely unexplored concept in 

farm animals relates to the hologenome (i.e. the genome of the host plus all microorganisms 

associated with the host). In mammals microbial symbionts are vertically transmitted to 

offspring initially via the birth canal and subsequently from milk and the surrounding 

environment. This has been shown to affect the development of the immune system in humans 

(associated with allergies, cancer and inflammatory bowel disease). In ruminants this is thought 

to affect the population of microbes that inhabit the rumen.  
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9. Muscle development and carcass composition: Muscle mass, is an important potential 

target for epigenetic mechanisms as, in cattle and sheep, the proliferation of muscle fibres 

occurs in utero. Lambs and calves are, therefore, born with a fixed number of muscle fibres, 

with subsequent growth occurring by hypertrophy (increase in fibre size). When nutritional 

insults on the pregnant ewe occur during early gestation (a critical period for muscle 

development) then effects on muscle fibre number and type can be detected in young offspring, 

but these effects tend to be lost (or are too difficult to detect) in older sheep. Such studies, 

however, are few and offspring were often subsequently placed on high-planes of nutrition, 

which probably induced an element of compensation; although the nature (i.e. mechanisms, 

including epigenetics) of how such compensation may come about has not been explored.  

 

10. Body fat, appetite and feed efficiency: In humans and rodents, poor prenatal dietary 

intakes of energy, protein and micronutrients are associated with increased risk of adult obesity 

in offspring. In cattle and sheep there also appears to be some evidence of long-term 

programming of adiposity although, perhaps surprisingly, the development of adipose tissue in 

ruminants is less well understood than that of muscle. In sheep, nutritional restriction in early 

gestation, or low birth weight, is associated with increased adiposity, particularly in older (i.e. 

over 6 months) male offspring. Unlike muscle fibres, there is no evidence to suggest that the 

number of adipocytes (or precursor cells) is set at a specific stage of life. There is certainly 

considerable scope to explore this area further, and also how muscle and lipid metabolism can 

influence residual feed intake and overall feed efficiency. In this context it is noteworthy that 

although nutritional challenges in utero can alter the developing hypothalamic appetite-

regulatory circuits in fetal cattle and sheep, there is no evidence that these changes result in 

alterations in subsequent food intake in current animal production systems. However, emerging 

data that epigenetic changes in anorexigenic genes could be of lasting significance for appetite 

drive deserves further study in livestock species. 

 

11. Reproduction and fertility: In female cattle and sheep, lifetime supply of potentially 

fertilizable oocytes (eggs) is established before birth and cannot be replenished thereafter. In 

males new spermatozoa are produced continually after puberty, but the number of Sertoli cells 

which are the primary determinant of sperm production and testes size in adult life is determined 

by proliferation during the fetal, neonatal and peripubertal periods. There certainly appears to 

be effects of malnutrition in utero on development of both male and female gonads. However, 

there is little evidence for an effect of prenatal nutrition on the onset of puberty in sheep or 

cattle, and the main impact appears to be on the number of ovarian follicles. There is some 

evidence of a reduction in ovulation rate and litter size in ewes malnourished during pregnancy, 

but larger scale studies are required to confirm these observations and their significance in 

commercial practice. Likewise in cattle, there is some evidence of effects of early pregnancy 

malnutrition on ovarian follicle reserve in offspring leading to poor subsequent fertility; but here 

the evidence is even more limited. There is also limited evidence for a negative impact of 

prenatal undernutrition on fertility of males, although very few long-term follow-up studies have 

been conducted in this area. 

 

Environmental chemicals, including so called ‘endocrine disrupting compounds’ (EDCs) have 

the potential programme various components of the reproductive axis (i.e. brain- pituitary-

gonad-uterus) to malfunction in later life, and so affect fertility. There is certainly evidence in 

rodents to support such effects. Cattle and sheep grazing sewage-sludge treated pastures are 

exposed to higher than normal levels of such compounds, and so are potentially most at risk. 

To date the most worrying implication of EDC research relates to the high incidence of 
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spermatogenic abnormalities in male offspring. Effects on female fertility are less evident, but 

there is a distinct lack of long-term follow-up studies for both sexes in both cattle and sheep. 

Given the well-known phenomenon of ‘bioaccumulation’ is there an increased risk for humans 

consuming milk and meat products from ruminants grazing sludge-treated pastures? 

 

12. Advanced reproductive technologies (ART): The potential of these technologies to enhance 

reproductive rate of beef cattle and sheep, either within genetic improvement programmes or 

in commercial herds and flocks, has not been fully realised in the UK. CAP associated 

structural problems within the beef and sheep sectors are partly to blame for the lack of 

technical innovation and industry uptake in the past, but there have been issues with regard to 

success rates and fetal development leading to ‘Large Offspring Syndrome’. The main issues 

pertained to early pregnancy losses and large calves/lambs at birth with associated obstetrical 

complications and morbidity. The available evidence indicates that there are no obvious long-

term effects on animal production and health, although there have been few studies in this 

area. Subsequent refinements to methods of in vitro embryo production seem to have mitigated 

these adverse effects (although the situation requires monitoring). Developments in the use of 

sexed semen (e.g. for single-sexed once-bred heifer systems) and genomically evaluated 

sexed embryos offer huge potential advantages for livestock improvement programmes, 

recognised and practiced in various countries across the world; none more so than Brazil 

where it seems that these technologies work better in indicus than taurine breeds of cattle. The 

successful uptake of these technologies within the UK beef and sheep sectors requires 

improvements in the general level of reproductive management and on-farm facilities for 

handling livestock.  

 

13. Industry relevance and recommendations: There are a number of commercially relevant 

traits that have not been considered in beef cattle and sheep, and aspects of normal 

agricultural practice that haven’t been investigated. These omissions primarily reflect the 

nature and level of research funding in the past, which has primarily been research council and 

charity based, and where there has been a clear biomedical slant. The limited data that does 

exist pertains mostly to sheep. 

 

In this article we have considered the following traits that have been investigated to a greater 

or lesser extent: (a) neonatal survival, (b) growth rate and feed conversion, (c) whole-body and 

carcass composition, (d) animal behaviour, and (e) reproductive potential and fertility. Prenatal 

risk factors that can influence these traits include: (i) parental nutrition, (ii) gestational stress, 

(iii) environmental chemicals, and (iv) breeding technologies. 

 

Consequently, key take-home messages and recommendations include: 

 

A. Nutrition during pregnancy: Adherence to existing standard dietary recommendations 

for macro- and micro-nutrients should avoid suboptimal in utero development that could 

have negative long-term effects on offspring growth and health. However, there is a 

lack of information for beef cattle and sheep to predict effects on carcass composition. 

EBLEX funded studies, therefore, could establish KPIs on commercial herds and flocks 

to validate/refine these recommendations, and to quantify the extent to which early life 

development may impact on long-term performance (both physical and financial 

performance). Data collection should include ewe/cow body condition at key stages of 

the annual production cycle and birth weight, ultimately with corresponding data on 

carcass yields. Another key trait to monitor is fertility across successive parities. 



 
 

x 
 

B. Gestational stress: This is an area that has been under investigated in both beef cattle 

and sheep. Evidence from rodent and human studies indicates that these effects are 

real. Factors such as housing, stocking density and handling during pregnancy are all 

worthy of further investigation. 

C. Environmental chemicals: As around 73% of sewage sludge is dispensed on 

agricultural land, so there is a need to assess the effects that this may have on grazing 

livestock. The available evidence indicates effects on the development of male 

reproductive organs in sheep, but long-term consequences for ram fertility have not 

been properly ascertained; and effects in beef cattle have not been established. There 

is also the issue of bioaccumulation and, consequently, effects in humans consuming 

meat from animal grazing sludge-treated pastures. 

D. Advanced breeding technologies: A watching brief on ‘Large Offspring Syndrome’ is 

recommended should activity in this area pick up again. These technologies have much 

to offer for livestock improvement, but the UK lags behind other countries, particularly 

those in North and South America. Improved standards of reproductive management 

(i.e. for sperm/egg/embryo donors and recipients) in both beef herds and sheep flocks 

are required. Improved handling facilities are needed as well as an improved 

awareness of factors that affect fertility. There is scope also to develop our 

understanding of why these technologies are so much more successful in Bos indicus 

and opposed to Bos taurine cattle. This extends to establishing a better understanding 

of their underlying fertility, which also differs between these two sub species. 
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Introduction 

 
The biology of ‘fetal programming’ is complex, but experimental studies in rodent models and large 

animals, as well as human epidemiological studies, have clearly demonstrated that they can have 

a profound effect on subsequent development and life-long impacts on health. Whilst relatively 

few studies have investigated epigenetic mechanisms in farm animal species, a number have 

considered the longer-term consequences and impacts of early life events on animal production. 

Consequently, there is evidence in farm animals that maternal nutrition, stress or ill-health during 

pregnancy can affect how animals develop before birth, with implications for their later health and 

productivity.  Similarly, there is evidence that offspring development from birth to the onset of 

puberty can have long-lasting effects for adult traits of economic importance.   

However, whilst research conducted to date has generated a basic understanding of the biology 

underlying prenatal effects in mammals, including farm animal species, the relevance of such 

effects for livestock production has been poorly explored. As such, the extent to which farmers, 

industry advisors and other stakeholders should devote effort and resources to modulating 

prenatal and pre-pubertal development within livestock management systems is unclear. The time, 

therefore, is right for a comprehensive appraisal of the scientific knowledge on such effects in 

livestock species, and to integrate such information as exists into farming practice as appropriate. 

It is clear that elucidating the degree to which maternal state during gestation alters fetal biology, 

with later implications for productivity, health and welfare outcomes, requires a joint consideration 

of both the science and the commercial realities of routine farm management. Also, beyond 

establishing the general principle that maternal state may impact upon progeny during their 

postnatal lifetime, it is necessary to consider the specific sources of such effects within normal 

farming systems, and use the available scientific knowledge to suggest possible practical 

solutions. The ultimate goal of research in this area is to improve the efficiency and 

competitiveness of beef and sheep production, with associated benefits for individual farmers, the 

industry as a whole, and for farm animals themselves. 

The purpose of the current report, therefore, is to provide for the first time a comprehensive and 

critical account of our current state of knowledge of how early life events, particularly those that 

occur in utero,  can impinge on long-term growth, development, productivity and health of offspring 

in cattle and sheep. Given the extent of work conducted in humans and laboratory animals, 

reference to these species will be made where they provide insights into underlying mechanisms 

or effects not yet reported in farm animals. In this context it is worth noting that the UK Scientific 

Advisory Committee for Nutrition’ (SACN) subgroup on maternal and child nutrition recently 

undertook a similar project where they reviewed evidence of how early-life nutrition can influence 

growth and development in children, and the risk of developing chronic, non-communicable 

diseases in adulthood (SACN, 2011). Although this review focussed mainly on human nutrition, it 

considered evidence from animal (mostly rodent) studies where these provided insights into some 

of the underlying mechanisms, including epigenetic mechanisms. With respect to farm animal 

species, it is also worth noting that there have been some previous attempts to review aspects of 

this topic, including the effect of intra-uterine growth restriction on post-natal productivity (Wu et 

al., 2006), and peri-natal programming of lifetime fecundity (Gardner et al., 2008). However, no 

previous study in farm animals has undertaken such a comprehensive review of the topic, with 

implications for industry, as the one now presented. In this review factors influencing early life 

events in addition to parental nutrition, such as stress and exposure to environmental chemicals, 

will be considered.  
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1. Developmental Origins of Health and Disease: the ‘Barker Hypothesis’ and beyond 

Contemporary interest in fetal physiology and development can trace its origins to the pioneering 

studies of Sir Joseph Barcroft and colleagues at Cambridge (UK) between the early 1920s and 

mid1960s. Barcroft is described as having been a ’broad-ranging integrative and comparative 

physiologist’, who helped to cultivate an environment in Cambridge at that time where other 

leading reproductive/developmental physiologists such as Robert McCance and Elsie 

Widdowson, as well as Sir John Hammond, could flourish (Boyd and Boyd, 2010). Many of their 

pioneering studies were conducted in ruminant species, particularly sheep, which was utilised as 

a model to investigate fetal physiology and responses to a variety of environmental stimuli, 

including nutrition. A number of other leading investigators completed their doctorates at 

Cambridge during this period, including Lindsay Wallace, later to become Director of the Animal 

Research Station at Ruakura, New Zealand. Whilst Wallace was destined to develop interests in 

dairy-cow nutrition, he is best remembered by many for his landmark studies on fetal/neonatal 

development in sheep (e.g. Wallace, 1948), where mathematical concepts of growth allometry 

previously developed by Sir Julian Huxley, and later championed by Samuel  Brody (Missouri) on 

concepts of bioenergetics and growth in domestic animals, were applied.      

However, the concept that developmental processes in utero can predispose offspring to certain 

chronic diseases in later life, including cancer and various metabolic and cardiovascular diseases, 

only came to light following publication of the pioneering retrospective cohort studies on human 

subjects conducted by David Barker and colleagues at the University of Southampton. Initial 

studies associated the incidence of infant mortality to deaths in adults attributable to bronchitis, 

stomach cancer and rheumatic heart disease (Barker and Osmond, 1986). These authors 

proposed that ‘poor nutrition in early life increases susceptibility to the effects of an affluent diet’. 

In a letter to the British Medical Journal two years later, however, they presented their first 

evidence that an adverse intra-uterine environment, culminating in low birth weight, was 

associated with hypertension in children (Barker and Osmond, 1988). Their findings on death by 

coronary heart disease in adult men were published in the Lancet the following year (Barker et al., 

1989). These and related observations gave rise to what is known as ‘The Barker Hypothesis’, 

now more commonly referred to as the Developmental Origins of Health and Disease or DOHaD. 

Sadly, David Barker passed away on 27th August 2013. However, a plethora of studies have been 

conducted in the 25 years since his initial findings were published, both in humans and in a variety 

of animal-model species, including ruminants. These studies have been the subject of extensive 

review and meta-analysis (McMillen and Robinson, 2005; Gluckman et al., 2008; Fowler et al., 

2012; Thayer et al., 2012; Langley-Evans, 2013) and only brief reference will be made in this 

article to those that don’t involve ruminants. Important issues to emerge during this period, and 

which will be addressed next and later in this report, include (i) nature of environmental exposure 

(e.g. maternal stress, parental nutrition, environmental chemicals and assisted reproduction), (ii) 

stage of development at time of exposure (e.g. early vs late pregnancy and infancy), (iii) 

developmental legacy (e.g. non-communicable chronic diseases, cognitive abilities, growth, 

fertility and ageing) and (iv) underpinning mechanisms and the likelihood of trans-generational 

inheritance. 
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1.1. Human epidemiological studies 

In addition to the studies of Barker and colleagues, large-scale retrospective cohort studies in 

humans include those that investigated the legacy of the ‘Dutch Hunger Winter’ of 1944-45, where 

the population of Northwest Holland, including pregnant women, received as little as 400-800 

calories per day for a period of 5 months. An extensive body of data has since been published 

which shows that famine exposure during pregnancy can impair glucose tolerance, increase 

obesity and atherogenic lipid profiles together with the incidence of coronary heart disease in adult 

offspring (Roseboom et al., 2006). Females conceived during the famine also had an almost five 

times increased risk of developing breast cancer in adulthood. The incidence and severity of these 

various ailments was influenced by the stage of gestation and relative proportion of carbohydrates 

to protein in the restricted diet. In general, exposure to famine during early gestation resulted in a 

broader range of adverse effects, which tended to be more severe (Painter et al., 2005). Famine 

exposure during pregnancy also affected cognitive function and stress sensitivity in adult offspring, 

and increased the incidence of schizophrenia and anti-social personality disorders (Hoek et al., 

1996; Neugebauer et al., 1999). Somewhat paradoxically, women exposed to famine in utero were 

reproductively more successful than women not exposed; they started reproducing at a younger 

age, had more offspring, a higher proportion of twins and were generally less likely to remain 

childless (Painter et al., 2008).  In contrast, for females, famine exposure during childhood 

decreased the chances of childbirth and increased the risk of having a medical reason for having 

fewer children than desired (Elias et al., 2005). In these studies there appear to be no effects of in 

utero famine exposure on male fertility. 

Other human epidemiological studies have made use of disasters, either manmade (such as 

pregnant women living under the threat of rocket attacks; (Wainstock et al., 2013a; Wainstock et 

al., 2013b) or natural (particularly Project Ice Storm which is mapping the impacts of the Quebec 

ice storm of 1998; (King et al., 2012), to examine the effect of psychological stress in pregnancy 

on child outcomes. These cohort studies currently only have data until adolescence for exposed 

mothers/children but report strong and persistent adverse child outcomes, similar to those seen 

following severe maternal food restriction. Birth weights are reduced (Dancause et al., 2011; 

Wainstock et al., 2013a; Wainstock et al., 2013b), and insulin secretion in adolescence, and 

incidence of obesity in young children, are increased if mothers are exposed to stress in pregnancy 

(Dancause et al., 2012; Dancause et al., 2013). In particular these studies report detrimental 

impacts on child cognitive and motor development of maternal stress in pregnancy, with the 

greatest cognitive deficits occurring when mothers were exposed to stress in early pregnancy and 

graded by the severity of the subjective stress (Laplante et al., 2004; King and Laplante, 2005; 

Laplante et al., 2008; Cao et al., 2014). 

 

1.2. Insights from laboratory animals 

Retrospective epidemiological cohort studies in humans may be in the species of clinical interest 

for some but they are open to a number of criticisms, including their ability to deal with confounding 

environmental factors that span the life-course, and indirect assessments of stress or malnutrition 

during pregnancy and infancy. Animal models overcome many of these limitations and have been 

instrumental in developing many of our contemporary theories (see Section 1.6) and in providing 

mechanistic insights. One of the most extensively studied models of developmental programming 

has been the maternal low-protein diet (mLPD) in rodents. Studies in rats and mice have shown 

that protein-restricted diets fed either throughout or during specific periods of pregnancy and 

lactation lead to hypertension and ‘metabolic syndrome’ (see Section 3) in offspring observed from 

weaning onwards (Langley-Evans, 2013). Importantly, variability in the nature and magnitude of 
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effects between studies can be attributed to the composition of diets (transpires that it’s the nutrient 

balance with respect to provision of sulphur amino acids and oil and not low protein per se that’s 

key), stage of pregnancy, species (i.e. rat vs mouse) and genetic strain within species. The same 

basic model has been used to demonstrate intergenerational programming of nephrogenesis and 

hypertension in rats (to F2 but not F3; (Harrison and Langley-Evans, 2009)) (see Section 1.5), and 

paternally-induced epigenetic programming of metabolism in mice (Carone et al., 2010). A number 

of other rodent-based models exist that have investigated the effects of global-nutrient restriction, 

obesity, maternal diabetes, dietary sugars, fat and salt during various stages of pregnancy. By 

way of example, in one such study the feeding of paternal high-fat diets led to β-cell dysfunction 

in Sprague-Dawley female, but not male, offspring leading to impaired glucose tolerance and 

insulin secretion, which was mediated at least in part by epigenetic modifications to genes involved 

in pancreatic function (Ng et al., 2010). Later in this article reference will be made to genomic 

imprinting and the consequences of environmentally-induced epigenetic alterations to these 

developmentally important genes. However, it is worth noting that in a murine model of dietary 

restriction, where pregnant females were fed 50% that of controls, imprinted genes as a class 

were found to be neither more nor less susceptible than non-imprinted genes to epigenetic 

regulation of expression (Radford et al., 2012). However, those genes that were altered are known 

to play important roles in conceptus response to undernutrition.  

Effects on offspring health and behaviour of prenatal stress or exposure to excess glucocorticoids 

have also been extensively investigated in both the rat and mouse (discussed next). However, for 

all of these studies the mouse in particularly is powerful because of the ability to analyse the effects 

of single-gene mutations, to conduct linkage analysis in crossbred strains and carry out gene 

targeting in order to establish disease phenotypes associated with specific genes or alleles. 

Orthologous genes in humans or other species can then be tested, either in linkage studies in 

families or in genome-wide association studies (GWAS), for effects on phenotype.  

With respect to models of pre- and post-natal stress, in 1985 a paper detailing the impact of 

postnatal handling of rat pups on hippocampal glucocorticoid receptors (Meaney et al., 1985) 

suggested a neurological basis to the altered stress reactivity seen in handled vs non-handled 

pups. Although several hypotheses were proposed, the induction of altered maternal care induced 

by handling the offspring has subsequently been shown to play a very significant role in 

subsequent development. Elevated maternal licking and grooming behaviour, either occurring as 

part of natural variation in behaviour or induced by pup handling, alters the pup epigenome at the 

hippocampal glucocorticoid receptor (which plays an important role in regulating stress reactivity) 

in comparison to low maternal licking (Weaver et al., 2004; Weaver et al., 2006). Maternal care in 

the rat thus influences offspring stress reactivity, and the expression of maternal behaviour in the 

female offspring (and so can have a transgenerational impact), and has been shown by cross-

fostering to be related to epigenetic rather than genetic mechanisms (Champagne, 2008). As rats 

are born at a much earlier stage of development than farmed livestock, whether similar 

mechanisms may operate in farm animals is not known although there is evidence for similar 

responses to maternal care in humans. A second well-studied rat model is that of prenatal restraint 

stress (PRS; reviewed by (Darnaudery and Maccari, 2008)). These studies demonstrate 

hyperactivation of the hypothalamic-pituitary-adrenal stress axis in offspring of PRS mothers and 

enduring behavioural differences compared to offspring of unstressed mothers. These studies 

have also received considerable attention as they highlight often marked differences in impact in 

male and female offspring (Darnaudery and Maccari, 2008; Bale, 2011). These rodent studies are 

starting to inform thinking and research in farm animal species, and the impact of pregnancy stress 

is beginning to be explored more widely (see section 3.2)            
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The guinea pig has also been used as a more precocious model animal species than rodents, 

which makes it attractive as a model for farmed livestock. Studies have investigated prenatal 

nutritional impacts (e.g. Dwyer et al., 1995), social stress in pregnancy (e.g. reviewed by Sachser 

et al., 2013), other forms of prenatal psychosocial stress such as exposure to strobe lighting (e.g. 

Schopper et al., 2012a; Schopper et al., 2012b) and use of exogenous glucocorticoids in 

pregnancy (e.g. Owen and Matthews, 2007a and 2007b). As with rat models, psychological stress 

in pregnancy is associated with altered fetal brain development, dysmasculinisation of male 

offspring, and modified stress responses in adulthood in guinea pigs, which has been shown to 

persist into the second generation (Schopper et al., 2012a; Schopper et al., 2012b). Research in 

guinea pigs has also focused on adolescence as a second sensitive period, in addition to prenatal, 

when behavioural profiles may be modified (Sachser et al., 2013). 

 

1.3. Other farm animal models 

Passing reference to studies conducted in the pig is made throughout this article, but it is worth 

pausing to reflect on the significant contribution that this species has made to biomedical research 

in general and specifically investigations into MetS. The value of porcine models for these types 

of study was comprehensively reviewed by (Litten-Brown et al., 2010), who also considered the 

value of mini pigs. These authors noted important metabolic/physiological differences between 

domestic breeds (i.e. between Large White, Meishan and Prietran). The Large White is often 

favoured for these types of study due to the great variability that exists in body-weight among 

littermates, which serves as a natural model of intra-uterine growth restriction (IUGR).  

As a litter bearing species the pig presents unique challenges to production processes and 

provides novel insights into within-litter interactions and competition. For example, both IUGR 

piglets and within-litter variability in piglet birth weights limit effective piglet management.  The 

consequences of IUGR for traits of commercial importance in pigs (e.g. neonatal survival, muscle 

development) were considered by (Foxcroft et al., 2006), who raised concerns about introducing 

hyperprolific females into the breeding herd.  Alterations to the composition of the diet consumed 

by pregnant female pigs have been shown to increase average birth weight and reduce the 

incidence of IUGR piglets. These include feeding a diet low in vitamin A before mating and during 

the first month of pregnancy (Antipatis et al., 2008), supplementing gilt diets with L-arginine from 

day 30 to day 144 (Mateo et al., 2008) or 1% L-glutamine between days 90 and 114 of gestation 

(Wu et al., 2011). L-Arginine supplementation, which has also been shown to prevent fetal growth 

restriction in undernourished ewes (Lassala et al., 2010), is of particular interest as arginine is the 

immediate precursor  of both the production of nitric oxide which is an important vasodilator and 

the production of polyamines which are critical for normal cell and tissue growth. 

Female pigs that experience stressful situations during pregnancy give birth to piglets exhibiting a 

wide range of altered phenotypes, in the absence of effects of prenatal stress on litter size or piglet 

birth weight. For example, in studies prompted by the need to understand the consequences of 

group-housing pregnant pigs throughout gestation, pigs born to sows that were stressed by being 

mixed with an unfamiliar older sow for two 1-week periods during mid-pregnancy had heightened 

pain perception (Rutherford et al., 2009), reduced post-weaning growth rates, altered immune 

status (as measured by concentrations of acute-phase proteins) and poorer reproductive 

development, particularly in male piglets (Ashworth et al., 2011). Similarly injections of ACTH, 

which mimic a stress-induced increase in cortisol, during mid-pregnancy were associated with a 

shorter anogenital distance in male piglets at birth (Lay et al., 2008), suggesting that pre-natal 

stress reduces the degree of masculinisation of male fetuses.   
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In contrast there have been few large-scale studies assessing possible associations between 

maternal diet during pregnancy and offspring development in dairy cattle. One study of 988 heifers 

from a controlled genetic selection trial found no significant relationships between the feeding 

system (high or low concentrates) and the reproductive performance of daughters in two genetic 

lines (Pryce et al., 2002).  

 

1.4. Inter-(trans)-generational inheritance 

Considerable excitement and much debate has surrounded this topic in recent years, particularly 

in the context of epigenetic inheritance, as this this is often touted as the mechanism by which 

traits acquired in one generation are passed onto the next (reviewed by (Grossniklaus et al., 2013; 

Aiken and Ozanne, 2014)). The concept of inheritance of acquired characteristics was first 

proposed by the French naturalist Jean-Baptiste Lamark (1744-1829), who subsequently became 

discredited for entertaining such a notion. However, our contemporary understanding of biological 

processes across a wide range of species that include plants, invertebrates and mammals broadly 

supports this concept and the involvement of epigenetics. It is known, for example, that heritable 

silencing of repetitive DNA sequences that constitute much of the heterochromatic regions of the 

genome occurs trans-generationally, and involves epigenetic mechanisms such as those 

described in Section 2 of this article. A related example involves inheritance of epigenetic 

modifications at the agouti locus in mice. In viable yellow (Avy/a) mice a retrotransposon inserted 

upstream of the agouti gene causes ectopic expression of agouti protein which has pleiotropic 

effects, influencing coat colour, metabolism and health. The distribution of phenotypes is related 

to the methylation status of this retrotransposon which is incompletely erased when passed 

through the female germline, thus leading to inheritance of epigenetically induced modifications 

(Morgan et al., 1999). However, as discussed in the next section, most acquired epigenetic ‘marks’ 

that involve modifications to nuclear DNA and associated proteins are erased or ‘reset’ in the germ 

line, and so are not passed on directly to subsequent generations. This would also appear to be 

the case for the Avy locus, for maternal methyl-diet-induced epigenetic modifications at this region 

are not trans-generationally inherited (Waterland et al., 2007).  

At this point in the discussion it is worth noting that prions represent a class of protein that can be 

inherited across generations independently of chromosomes. Pioneering studies with prion 

proteins (PrP) in lower eukaryotes (i.e. yeast and filamentous fungi) by Susan Lindquist and others 

have revealed that they can act as ‘epigenetic’ elements and can at least partially account for non-

Mendelian patterns of inheritance for a number of traits (Hofmann et al., 2013). Mammalian prions 

share many common features with their counterparts in yeast, but their function and patterns of 

inheritance are less well known. They have, nevertheless, been shown to regulate pluripotency in 

mouse embryonic cells, and contribute to their differentiation into neural progenitor cells (Peralta 

et al., 2011; Miranda et al., 2013). Importantly, prion proteins (PrPC) are also present in bovine 

oocytes and pre-elongation embryos (Peralta et al., 2012), although again their function is poorly 

understood. Understandably, prions have received bad press over the last two decades due to the 

involvement of a misfolded form of this protein (designated PrPSc) in bovine spongiform 

encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) (Ironside, 2012). 

Intergenerational inheritance (i.e. vertical transmission) of these aberrant variants that lead to 

scrapie in sheep can occur across the placenta from around mid-gestation in genetically 

susceptible dams and fetuses (Wrathall et al., 2008). The consensus formed from results of 

artificial insemination and embryo transfer experiments in both cattle and sheep, however, 

suggests that transmissible SEs are unlikely to be spread by semen or the pre-hatching embryo 

(i.e. < Day 7).  
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The foregoing discussion, nevertheless, highlights the importance of inheritance of cytoplasmic 

factors (that include mitochondria) in addition to nuclear chromatin at the point of fertilisation. It 

also indicates that the maternal environment can influence fetal development in a manner that 

leads to the inter-generational transmission of phenotypes, and that this may be independent of 

epigenetic effects. Jirtle and Skinner (2007) noted that for epigenetic modifications to chromatin 

to be considered a plausible mechanism for inheritance of phenotypic change then effects need 

to persist to at least the F3 generation. The reason is that when an F0 gestating female is exposed 

to environmental stimuli, both the F1 embryo and F2 generation germ-line are also directly 

exposed. For this reason neither parental nor indeed grandparental effects need have an 

epigenetic basis; although pup-licking and grooming behaviour in rats can lead to epigenetic 

modifications at the glucocorticoid gene-promoter in offspring (Weaver et al., 2004). Jirtle and 

Skinner (2007) went on to summarise some of their own work in rats where exposure to 

environmental toxicants (e.g. the agricultural fungicide vinclozolin; see Section 5) led to germ-line 

alterations to the epigenome and phenotypic defects that were present in F3 progeny. These 

defects included male infertility, breast cancer and immune abnormalities.  

Other examples of trans-generational inheritance of phenotypic traits in rodents are emerging, 

although notably few extend to or beyond F3; and these have been reviewed in detail elsewhere 

(Aiken and Ozanne, 2014). Not surprisingly, evidence for similar effects occurring in farm animals 

is scarce. However, some recent tantalising (i.e. not quite statistically significant) data in the pig 

indicate that F0 boars, fed diets enriched in one-carbon metabolites (including methionine, choline, 

vitamin B12 and folate), sired F1 boars that in turn sired F2 pigs which produced leaner carcasses 

associated with global changes in gene expression and epigenetic modifications to at least one of 

these genes (Braunschweig et al., 2012).  Additionally, albeit in an avian model, evidence of 

transgenerational transmission of attenuated stress reactivity, due to early life stress, to male 

offspring has been demonstrated in domestic chickens (Goerlich et al., 2012).  

 

1.5. Theoretical considerations  

The previous section on trans-generational inheritance raises theoretical considerations as to why 

such effects may arise. Over the years a number of paradigms have been advanced as a means 

to frame developmental programming within a scientific context. In 1986, it was proposed by 

Professors Nick Hales and David Barker that fetuses exposed to a less than optimal nutritional 

environment adopted and ‘thrifty phenotype’ (Hales and Barker, 1992). That is, in order to balance 

energetic supply and demand, fetuses down-regulated energy i.e. nutrient, consuming processes 

(e.g. growth) as a short-term reductive adaptation that ensured survival through any nutritionally 

restrictive period. Subsequent fixation of such a phenotype into adult life when nutrients may be 

more abundant can determine their intake. However, this has negative consequences; for a given 

energy intake fetuses rendered thrifty have greater fat deposition (particularly ectopic), skeletal 

muscle insulin resistance and other indices of metabolic syndrome. Furthermore, such term infants 

upon exposure to adequate nutrients not constrained by maternal supply, have a greater tendency 

towards ‘catch-up growth’ – itself an independent risk-factor for later deleterious metabolic 

outcomes (Barker et al., 2005). Thus the thrifty phenotype hypothesis evolved into the ‘mismatch 

hypothesis’ (Gluckman et al., 2005b) in that metabolic sequalae were exacerbated when the pre-

natal/juvenile and adult environments were ‘mismatched’. That is, fetuses experiencing poor 

nutrition prenatally but excess nutrition postnatally, perhaps as adolescents or adults. The 

‘mismatch’ hypothesis perhaps explains a large proportion of the patients with maturity-onset 

diabetes in India that have experienced a ‘thin-fat’ nutrition transition (Yajnik, 2004). However, 

babies born to overweight and/or diabetic mothers are invariably large or ‘macrosomic’ but also 
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have an increased risk of diabetes, especially in Westernised countries (Catalano et al., 2003). 

Here, both the developmental and adult environments are nutritionally excessive and therefore 

‘matched’ and thus in accord with the ‘mismatch’ hypothesis should have reduced disease risk. 

This is clearly not the case and thus the thrifty or mismatch hypotheses required some revision.  

As research into developmental programming progressed it was increasingly found that the thrifty 

phenotype and mismatch hypotheses tended to account for only those individuals exposed to a 

limited proportion of the full range of developmental experience and that certain individuals had 

excess risk of disease despite no obvious early compromise (e.g. they were not born low birth 

weight). As a result, Gluckman and Hanson sought to explain developmental programming in an 

evolutionary context where fetal adaptation to a poor early environment did not necessarily 

provoke an immediate ‘survival response’ leading to, for example, low birth weight, but rather they 

proposed that subtle adaptations only became evident and advantageous later in life (i.e. a 

'predictive adaptive response' (PAR) (Gluckman et al., 2005a). A PAR may be induced early in 

life, remain asymptomatic, but result in improved or maximized fitness at a later stage of 

development (i.e. adulthood, should the developmental and adult environments be similar). To 

support the hypothesis disparate examples of a PAR from the biological sciences were found. 

Only recently was a study conducted in human populations that sought to test this hypothesis 

(Hayward and Lummaa, 2013). Contrary to predictions of the PAR hypothesis, individuals that had 

experienced low early-life nutrition had lower survival and fertility during subsequent famines (i.e. 

low later-life nutrition) relative to individuals that experienced high later-life nutrition. Thus 

alternative theoretical models are still required to provide a framework of understanding for the 

epidemiology of metabolic disease. 

Nevertheless, in regard to transgenerational inheritance, most human studies have only studied 

developmental programming effects within the first generation offspring (F1). Even if such female 

offspring become pregnant and passed on a deleterious phenotype to their offspring (F2) the effect 

cannot be truly considered transgenerational since how F1 adapt to the anabolic and metabolic 

challenge of pregnancy has been shown to be influenced by the early life environment (Yinon et 

al., 2010; King et al., 2013). Very few studies have considered developmental programming effects 

through to the F3 generation – a response that must evoke epigenetic programming of the germ-

line, as discussed elsewhere in this review. 

 

1.5.1. The hologenome concept and development 

The hologenome concept in the context of developmental programming states that environmental 

factors, such as diet, can alter the microbiota in such a way as to not only benefit the holobiont 

(host plus all microorganisms) in the short term, but through transmission to offspring, have long-

lasting multi-generational effects (Rosenberg and Zilber-Rosenberg, 2011). This line of thinking is 

comparatively new and, in mammals, largely untested. Under normal conditions the cooperation 

between the microbiota and host generally leads to improved fitness of the holobiont. For the host 

this includes protection against infectious disease, development and function of innate and 

adaptive immune systems (particularly in the gut), vitamin synthesis (including B vitamins such as 

cobalamin and folate), and protection against certain cancers and ‘metabolic syndrome’ (Kau et 

al., 2011). Indeed, Ross et al. (2013) used metagenomic data derived from high-throughput deep 

sequencing to predict inflammatory bowel disease status and body mass index in humans. 

However, they also used the same approach to predict enteric methane production in cattle.  

In mammals microbial symbionts are initially vertically transmitted to offspring through the birth 

canal (note reported differences in human infant microbiota between vaginal and caesarean 
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deliveries), subsequently from milk (note differences between breast vs formula fed infants), and 

from close physical contact with mum and the surrounding environment (Kaplan et al., 2011; Kau 

et al., 2011). In human medicine current interests mainly concern developmental programming of 

the immune system, whereas in ruminants the current primary driver for research into microbiota-

host interactions lies in methanogenesis and greenhouse gas emissions (Morgavi et al., 2010), 

where emerging evidence in sheep and goats indicate that the population of methanogens in the 

rumen may be acquired from a very young age (Gagen et al., 2012; Abecia et al., 2013). There is 

clearly considerable scope to extend these emerging ideas and data in all species to investigate 

long-term developmental programming in offspring, adaptive responses to changing environments 

and associated inter-generational inheritance. 

 

2. Epigenetic mechanisms of embryonic and fetal programming 

Cloning of “Dolly the sheep” demonstrated that virtually every cell within an adult mammal retains 

the entire genetic information (i.e. the whole genome) of the organism. It also made clear that not 

all of the genetic code is utilised by the many different cell types of an animal. That is, a mammary 

cell and a neuron are ‘programmed’ to selectively retrieve different genetic information encoded 

within the genome. Such cell type specific ‘programming’ is established during normal 

development and involves epigenetic mechanisms. A contemporary description of epigenetics 

states that it is “the study of mitotically and/or meiotically heritable changes in gene function that 

cannot be explained by changes in DNA sequence” (Riggs, 1996). Epigenetic processes program 

gene expression patterns and thereby uphold cell identity without altering or mutating the DNA. 

Such states in gene activity can be inherited through many cell divisions. Cells in adult tissues 

have the capacity to carry memories of embryonic development (Hon et al., 2013) or even from 

past generations.  

Two classic memory systems exist in mammals that are based on epigenetic programming of the 

genome: i) DNA methylation and ii) chromatin & histone modifications. 

 

2.1. DNA methylation  

DNA methylation in mammalian cells is predominantly targeted to cytosines of the palindromic 

CpG dinucleotide sequence. ("p" refers to the phosphodiester bond that connects the bases "C" 

and "G"). DNA is duplicated prior to cell division by semi-conservative DNA replication to ensure 

that the daughter cells receive a full copy of the genome. Following DNA replication, DNA 

methyltransferases (Dnmts) copy the methylation pattern of the parent DNA strand onto the newly 

synthesized daughter strand; the methylation status of a ‘parent CpG’ serves as template for the 

‘daughter CpG’. Such ‘maintenance methylation’ is therefore a mechanism that transmits 

epigenetic information ‘on the back’ of DNA to descendants of a given cell.   

Mammalian DNA has millions of CpG dinucleotides. These potential methylation sites are 

unevenly distributed throughout the genome. Regions of high CpG-density speckle a genome that 

is otherwise characterised by a relative depletion of this dinucleotide. Approximately 70% of gene 

promoters are CpG-rich (Saxonov et al., 2006). The majority of CpG-rich promoter regions remain 

completely unmethylated throughout development and adult life. Biologically important exceptions 

are CpG-rich sequences of imprinted genes and gene promoters present on the inactive X 

chromosome in somatic cells of females. Dense promoter methylation is generally associated with 

gene inactivity.  
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We still do not fully understand how cell type specific DNA methylation patterns emerge. The 

genotype exerts a strong influence and provides a blueprint for DNA methylation patterns found 

in adult tissues (Silva and White, 1988; Gertz et al., 2011). However, evidence suggests that these 

DNA methylation patterns are subtly altered during the life-course of an animal by environmental, 

physiological and stochastic events (Jaenisch and Bird, 2003; Whitelaw and Whitelaw, 2006). 

Plasticity and modulation of DNA methylation patterns in response to environmental signals, likely 

processes involved in fetal programming, are thought to have particular impact during critical 

periods of development when cell fates are specified.  

Thus, measuring differences in DNA methylation has become an important approach to explain 

phenotypic differences observed, for example in monozygotic twins and inbred animals. 

Measurements, however, are complicated by the presences of additional cytosine-modifications. 

The TET family of enzymes oxidise methylated cytosines to 5-hydroxymethylcytosine (5-hmC), 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Ito et al., 2011). At present, routine epigenetic 

screens fail to efficiently distinguish between the different types of cytosine modifications in DNA. 

TET-oxidised cytosines may represent intermediate steps of a demethylation process that 

removes the epigenetic mark from DNA. These cytosine modifications may also play other, as yet 

unidentified roles in gene expression and DNA metabolism. Whatever their purpose, current 

findings indicate that there is a cross-talk between DNA methylation/modifications and the second 

epigenetic memory system, which is based on chromatin structure and histone modifications. 

 

2.2. Histone modifications 

Chromosomal DNA of eukaryotic cells is always in contact with certain nuclear proteins; this type 

DNA-protein complex is called chromatin. The core unit of chromatin is the nucleosome (see 

Figure 2.1). It is a structure that consists of a 146 base-pair DNA sequence that is wound around 

an octamer-complex composed of two histone proteins each (H2A, H2B, H3 and H4). Chromatin 

is a dynamic structure and its configuration ranges from open, transcriptionally active 

‘euchromatin’, to condensed transcriptionally silent ‘heterochromatin’. Large portions of the 

genome are packed and organised into heterochromatin in differentiated cells. Genes poised for 

expression in a given cell-lineage are thought to emanate from ‘euchromatic’ chromosomal loops 

that provide access to transcription factors. Multi-subunit protein complexes are capable of 

remodelling the chromatin structure by repositioning of nucleosomes, leading to changes in 

established, lineage-specific gene expression patterns. Chromatin and gene expression are 

further influenced by posttranslational modifications of histones. 

N-terminal tails of histones protrude from the nucleosome-core and extend beyond the associated 

DNA. This structural property permits communication with surrounding nuclear factors. A host of 

enzymes has been identified that can either add - or remove - an ever-expanding list of 

modifications to histone tails (reviewed by Bannister and Kouzarides, 2011; Arnaudo and Garcia, 

2013). Many of these post-translational histone modifications promote or inhibit gene transcription 

and influence the general chromatin structure. The numerous possible combinations of histone 

modifications add to the complexity of epigenetic gene regulation. For most of these combined 

modification patterns the biological function(s) remain to be decoded. Generally, genomic regions 

with modification-rich histone tails are associated with gene regulation and expression. For 

example, histone H3 usually has three methyl-groups added to the fourth lysine (H3K4me3) in 

promoters of transcriptionally active genes. An overview of presently known histone modifications 

is provided in Figure 2.1. Unlike DNA methylation, epigenetic inheritance of region-specific 
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histone modifications from mother to daughter cells is only rudimentarily understood. Likewise, we 

are only beginning to unravel signalling pathways, environmental cues and cellular factors that 

determine how histone modifications are laid down. 

 

2.3. Non-coding RNAs 

Non-coding RNAs have emerged as functional molecules that can initiate and guide epigenetic 

changes in both DNA and histones (reviewed by Sabin et al., 2013). Small RNAs and long-

noncoding RNAs (lncRNAs) are the two broad classes of biological ribonucleic acids known to 

participate in epigenetic processes such as transcriptional silencing, chromatin remodelling and 

DNA methylation. For instance, methylation and inactivation of transposable genetic elements can 

be mediated by piRNAs, a class of small (26-31 nucleotides), non-coding RNAs. These piRNAs 

bind specialised protein-complexes and are thought to recruit Dnmts to repetitive elements present 

within the genome (Carmell et al., 2007).  

lncRNAs were first identified to play prominent roles in epigenetic phenomena such as X-

inactivation and genomic imprinting. With the advent of new sequencing technologies that allow 

profiling of a cell’s entire transcriptome it became apparent that thousands of genomic loci express 

lncRNAs (Ulitsky and Bartel, 2013). Thus, we are only starting to understand the specific roles of 

these non-coding RNAs in epigenetic regulation. The lncRNA HOTAIR, for example, associates 

with the Polycomb repressive complex 2 (PRC2) and is necessary to promote methylation of 

histone H3 at lysine 27 in certain chromosomal domains (Rinn et al., 2007). Intriguingly, a recent 

study demonstrated that oestradiol induces transcription of the lncRNA HOTAIR (Bhan et al., 

2013). It is therefore reasonable to speculate that non-coding RNAs are mechanistically linked 

with environmental programming of the reproductive system.  

 

2.4. Gender differences mediated by epigenetics 

Differences in gene expression have been observed between male and female pre-implantation 

embryos (Kobayashi et al., 2006; Bermejo-Alvarez et al., 2010; reviewed by Gardner et al., 2010). 

This type of sexual dimorphism appears to be a hormone-independent cell phenotype and affects 

both autosomal and X-chromosome-linked genes. For example, one-third of transcribed protein-

coding genes analysed (~2,900 transcripts) show sex-specific differences in in vitro-generated 

bovine blastocysts (Bermejo-Alvarez et al., 2010). Paternal imprinting of the bovine X 

chromosome could partly explain the up-regulated expression of X-linked genes in normal female 

blastocysts, as parthenogenetic embryos, which carry two maternal X chromosomes, were found 

to have lower transcript levels of representative X-encoded genes, such as BEX1, CAPN6, BEX2, 

SRPX2, and UBE2A (Bermejo-Alvarez et al., 2010). Moreover, the activity of the two X-

chromosomes in female blastocysts also appears to influence the expression of autosomal genes, 

leading to gender-specific transcript differences (reviewed by Wijchers and Festenstein, 2011) 

Female mouse ES cells with a deficiency of the DNMT3-like methyltransferase (DNMT3L-/-), lose 

genomic DNA methylation patterns more rapidly than their male DNMT3L-/- ES counterparts (Ooi 

et al., 2010). Altered nutrition during gametogenesis and pre-implantation development, shown to 

modulate DNA methylation patterns (e.g. Sinclair et al., 2007), may augment sexual dimorphism 

of gene expression patterns and thereby contribute to more pronounced gender differences in 

adult animals. 
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2.5. Recent advances in epigenetics 

Although cytosine modifications in mammalian genomes are generally thought to occur in a DNA 

sequence context of CpG dinucleotides, there are notable exceptions to this ‘rule’. Prior to the 

high-throughput sequencing era, prevalent non-CpG methylation of cytosines had been detected 

in mouse embryonic stem cells at CpA and, to a lesser extent, at CpT sites (Ramsahoye et al., 

2000). More recent data confirm and extend this finding, demonstrating that non-CpG methylation 

is also present during male germ-cell development (Ichiyanagi et al., 2013), in oocytes (Shirane 

et al., 2013) and is enriched within gene bodies of highly transcribed genes in both fetal and adult 

mouse brain (Lister et al., 2013). As mammals appear to lack enzymes that copy asymmetric non-

CpG marks, it is currently not clear how this type of modification could contribute to the propagation 

of epigenetic states established as a result fetal programming events.    

The study of RNA methylation is also an emerging field related to ‘traditional’ epigenetics and may 

prove relevant for our mechanistic understanding of fetal programming. Two modifications on 

bases located internally of RNA molecules - N6-methyladenosine (m6A) and 5-methylcytosine (5-

mC) are now considered to have important roles, albeit their specific biological functions are only 

starting to be determined. For example, m6A is a reversible base modification which can be 

removed by FTO, a m6A-demethylase genetically associated with obesity and the control of 

energy homeostasis. How such RNA modifications might be able to contribute to heritable 

epigenetic phenotypes remains to be shown (reviewed by Liu and Jia, 2013). 

 

2.6. Resetting the epigenome during mammalian development 

Two major epigenetic reprogramming events take place during early embryo development. The 

first event occurs right at the onset of development (Figure 2.2). Soon after fertilization sperm and 

the egg DNA undergo extensive chromatin remodelling in a process that begins by the formation 

of two pronuclei containing highly decondensed DNA. The open chromatin configuration resulting 

from the decondensation of the sperm DNA facilitates the assembly of new nucleosomes in the 

male pronucleus and entails the replacement of protamines by histones. These newly incorporated 

histones acquire specific modifications during the first cleavage divisions. These modifications 

include marks indicative of transcriptional activation (e.g. histone H3K9ac and H3K4me3) as well 

as other enriched in transcriptionally inactive regions. This array of new histone marks establishes 

a chromatin landscape that will ensure the timely expression of developmental genes when the 

major zygotic genome activation takes place after several cell divisions. Likewise, the maternal 

genome undergoes remodelling of chromatin marks, however these follow a different kinetics to 

that of the male pronucleus (Morgan et al., 2005). One of the best characterized epigenetic marks 

is DNA methylation. The sperm DNA, which is more methylated than oocyte DNA (Kobayashi et 

al., 2012; Smallwood and Kelsey, 2012) undergoes active demethylation during the first cell cycle. 

This process is in part driven by TeT3 enzyme which catalyses the conversion of methylated 

cytosines into hydroxymethyl cytosines (Gu et al., 2010; Iqbal et al., 2011) before the start of DNA 

replication  (Wossidlo et al., 2010) Paternal DNA demethylation is an essential step in early 

development, as most TeT3 mutant embryos do not survive development to term (Gu et al., 2010). 

The maternal genome, however, undergoes passive DNA demethylation by dilution during mitotic 

divisions and by the concurrent exclusion of de novo Dnmts from the nucleus of early blastomeres 

(Carlson et al., 1992). The global DNA demethylation observed in the preimplantation embryo 

however excludes certain regions of the genome. Indeed, imprinted genes are protected from this 
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DNA demethylation activity, and recent evidence shows that the maternal and paternal imprints 

are protected by different mechanisms (Nakamura et al., 2012). The extensive demethylation 

between the zygote and the morula stage prepares the chromatin of the totipotent blastomeres for 

the segregation of the lineages that will contribute to the formation of the conceptus. Although the 

complexity of these changes is just beginning to be understood, it is well known that this process 

is indispensable for ensuring normal embryo development. This is demonstrated by experiments 

where mutation of histone modifying enzymes or Dnmt in embryos leads to severe abnormalities 

or death (Li et al., 1992; Peters et al., 2001; Posfai et al., 2012). This indicates that remodelling 

during early stages of development is of critical importance for resetting the epigenome in 

preparation for establishment of new programs of differentiation during lineage commitment. 

Importantly, the kinetics described above for rodents have also been observed in embryos of 

different domestic animals, including cattle, suggesting that these mechanisms are conserved 

across mammals (Lepikhov et al., 2008; Maalouf et al., 2008). 

The second major wave of epigenetic reprogramming takes place in the germline (Figure 2.2). 

The embryonic precursors of the mature gametes, or primordial germ cells (PGC) are first located 

at the base of the allantois from where they will initiate their migration to their final destination, the 

gonadal ridges. In large mammals this period extends between two and eight weeks of 

development. It is here that environmental perturbations can have long lasting effects on offspring. 

Indeed, during this period PGC undergo extensive reprogramming of their epigenome, 

characterized by dynamic changes in histone modifications (loss of H3K9me1/2 and gain of 

H3K27me3 and H3K4me2), genome wide DNA demethylation (including imprinted genes), and 

reactivation of the X-chromosome in females (Saitou and Yamaji, 2012). Recent investigations 

however show that some retrotransposable elements (such as IAPs or intracisternal A-type 

particles) escape reprogramming in germ cells (Popp et al., 2010), a mechanism that probably 

evolved to prevent parasitic sequences moving within the genome. Importantly, the resistance to 

reprogramming by these sequences can lead to phenotypic inheritance between generations 

(Morgan et al., 1999; Daxinger and Whitelaw, 2012). This initial reprogramming resulting in the 

resetting of chromatin marks if followed by the differential re-establishment of imprints in male and 

female gametes. In males, paternal imprints are re-established in mitotically arrested gonocytes 

before birth. In females, however, imprints are re-established after birth during follicle growth. The 

mechanisms of germline reprogramming have been primarily characterized in rodents, however, 

studies in large mammals (i.e. human and pig) show that the overall equivalent kinetics is similar, 

although some of the changes occur in a more protracted manner, consistent with slower 

development compared to rodents (Hyldig et al., 2011; Gkountela et al., 2013). 
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Figure 2.1. Epigenetic mechanisms program and regulate gene expression patterns and thereby 

influence the phenotype without changing the DNA sequence (genetic information) of a cell. Well-

defined epigenetic mechanisms include DNA modifications of the cytosine base and post-

translational modifications of histone proteins which, together with around 146 base pairs of DNA, 

form the nucleosome, a core unit of chromatin.  

It is thought that this highly complex and extensive remodelling of the PGC epigenome is critical 

for preventing the inheritance of epimutations acquired by the parental DNA. Having a detailed 
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understanding of the dynamic changes that occur during the epigenetic reprogramming of the 

germline in large mammals will inform into the periods of increased susceptibility of PGC to 

environmental effects and their potential effects in the offspring. 

 

2.7. Epigenetics and developmental programming 

Given that the genetic code doesn’t vary between cell types it follows that epigenetic mechanisms 

evolved in multicellular organisms to allow cell-lineage specific gene expression  (Jablonka, 1994). 

How these mechanisms combine to facilitate cellular differentiation is incompletely characterised 

but, with the advent of contemporary deep-sequencing and related technologies, developmental 

epigenetics has become a highly active field of biology, so that our understanding of these 

processes is likely to improve rapidly in the very near future.  

Much attention to date has focussed on the role of tissue-specific differentially methylated regions 

of DNA, particularly those that reside within CpG islands (CGIs). These may be associated with 

annotated gene transcription start sites, or lie within or between genes. (Illingworth et al., 2008) 

demonstrated tissue specific methylation in a number of CGIs associated with developmentally 

important genes including homeobox (HOX) and paired box (PAX) family members in humans. 

More recently these authors showed that DNA methylation was more likely to occur at CGIs within 

gene bodies during the early stages of lineage specification, and to be associated with gene 

silencing (Deaton et al., 2011) . Such regions may be potential targets for environmentally-induced 

epigenetic regulation and, as such, form the mechanistic basis of programming of lifelong health, 

productivity and fertility in animals.  
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Figure 2.2.  DNA methylation in pre-implantation embryos and germ cells. Removal of DNA 
methylation marks during embryo development prevents the transmission of epimutations 
between generations. Two major waves of methylation reprogramming take place during 
development: 1- rapid demethylation of the paternal genome takes place after fertilization. 
The maternal DNA is demethylated gradually during cleavage divisions. De novo methylation 
is established in a tissue specific manner during germ layer differentiation; 2- germ cell 
precursors undergo genome wide demethylation and erasure of imprinted loci during fetal 
development. During gametogenesis the germ cells acquire new imprinted methylation marks 
in a parent-of-origin specific manner. 
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3.   Programming of lifelong health and wellbeing  

3.1. Metabolic syndrome  

Any ‘syndrome’ is defined by having a set of symptoms which consistently occur together. The 

constellation of metabolic symptoms that present more regularly than would occur by chance in 

individuals with cardiovascular disease and/or Type II diabetes (T2D) led to a working definition 

of ‘metabolic syndrome (MetS)’ (Eckel et al., 2005; Zhang et al., 2011). A human subject 

diagnosed with MetS must have either 1) glucose intolerance (defined as elevated fasting or 

postload (75g) glucose) and/or 2) insulin resistance (defined as a fasted insulin value in the upper 

quartile for a non-diabetic population) plus 2 or more of the following; 3) dyslipidaemia (elevated 

plasma triglyceride concentration and/or reduced high density lipoprotein (HDL) cholesterol), 4) 

elevated blood pressure, 5), central obesity and 6) microalbuminuria. In the Westernised world, 

MetS is prevalent (~7 to 24% population) and the incidence is higher in males than females, and 

rises with age (e.g. prevalence rose in US males from 7% to 44% between the ages of 20-29 years 

and 60-69 years).  

 

3.1.1. Developmental Programming of MetS: What do we know? 

Human cohort studies using retro- and prospective experimental designs have illustrated how 

variation in the developmental environment with or without associated changes in a phenotypic 

outcome such as growth may increase susceptibility to one or more elements of the metabolic 

syndrome and predispose toward cardiovascular or metabolic disease (Adair et al., 2013). A 

number of recent narrative reviews have summarised the area (Victora et al., 2008; Rinaudo and 

Wang, 2012) and, broadly speaking, the relationship appears to be reverse J- to U-shaped. That 

is, a poor or abundant early environment (i.e. nutritionally) increases risk of metabolic disease 

later in life, despite average or median growth thereafter. As an illustrative example of attributable 

risk due to poor early nutrition, Thurner and colleagues retrospectively examined the 

developmental history of the entire Austrian population that were currently receiving treatment for 

T2D (325,000 individuals; (Thurner et al., 2013)). They determined the excess risk of developing 

T2D as a consequence of early malnutrition to be 40%. At the opposite end of the spectrum, 

exposure to nutritional excess early in life (e.g. marked by high birth weight) exacerbates your 

lifetime risk of being overweight later in life (Curhan et al., 1996; Dabelea et al., 2000). Excess 

body fat significantly increases your risk of MetS, especially when experienced early in life (The 

et al., 2010). Importantly therefore, across the whole spectrum of developmentally-programmed 

risk, evidence of abundance experienced post-natally either as postnatal growth acceleration (i.e. 

centile crossing (Singhal et al., 2010)) or excess fat deposition (becoming overweight or obese; 

(Law and Shiell, 1996; Franco et al., 2009; Magnussen et al., 2010)) is detrimental but markedly 

exacerbates any residual prenatally programmed risk of metabolic disease.  

 

3.1.2. Use of cattle and sheep as models for human metabolic disease 

With the exception of the non-human primate (Zhang et al., 2011), for which experimental research 

is limited, there are no animal models that spontaneously develop MetS. Furthermore, very few 

animal models recapitulate >5 individual symptoms that comprise MetS. Less commercial, 

relatively feral breeds of pig, when exposed to commercial (or a westernised equivalent diet), 

rapidly develop many aspects of MetS (Spurlock and Gabler, 2008) but this is not observed in 
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artificially selected, commercial breeds, which are distinctly resistant to the syndrome. The 

metabolism of ruminants, being largely based on generation of short-chain fatty acids (particularly 

propionic) by the gastric microbiome, rather than on gastrointestinal glucose absorption means 

that one of the key symptoms of MetS – glucose intolerance – is unlikely to be observed. As a 

result they are also relatively insulin resistant per se. Nevertheless, aspects of developmental 

programming of other risk factors for MetS (e.g. elevated blood pressure, central obesity, 

dyslipidaemia) have, to some extent, been reproduced in ruminant models (for review see Sinclair 

et al., 2010) but to a much greater extent in laboratory animal models (for narrative reviews see 

Armitage et al., 2004; McMillen and Robinson, 2005; McMullen and Mostyn, 2009).The important 

point that is relevant for a consideration of the effect of developmental programming in cattle and 

sheep is the extent to which such programmed metabolic effects, however small, may actually 

translate and impact productive traits (i.e. offspring growth to culling, deposition of lean/fat mass 

to influence body composition, and fertility).  

The reported effect size of programming of the cardiovascular system (e.g. an increase in blood 

pressure of 5-10 mm Hg), or renal system (e.g. evidence of microalbuminuria in young sheep), is 

unlikely to be of any consequence for farmers. Equally, relatively small effects on glucose 

tolerance, peripheral insulin resistance or dyslipidaemia when considered alone are unlikely to be 

of any significance. However, for many reasons as discussed in the highlighted reviews above, 

such work is important to be demonstrated in larger animals in their home environments and with 

very different life history strategies to contrast with laboratory animal models. Further, when 

considered as individually programmed parts of a whole affected system, which may be 

exacerbated by artificial selection for certain traits of interest in agricultural animals, then some 

trade-off may be expected that impacts productive traits of interest. For example, dairy cows are 

an extreme example of selection for differential nutrient partitioning to support mammary growth 

and function. They also demonstrate marked insulin resistance with concomitant ectopic fat 

deposition (i.e. in organs and not peripheral tissues) (Sinclair et al., 2010) which may explain in 

part their decline in fertility (Royal et al., 2000).   

 

3.1.3. Critical periods of development 

Passing reference was made previously (Section 1.1) to differential effects of gross nutrient 

restriction during early, mid or late gestation in women subjected to the Dutch hunger-winter of 

1944-45. In utero exposure to famine during the first trimester of pregnancy did not affect birth 

weight but led to adult offspring that exhibited the most striking health-related effects. These 

individuals were the most obese and exhibited a 3-fold increase in the incidence of coronary heart 

disease compared to those not exposed to famine (Painter et al., 2005). In contrast, famine 

exposure during late gestation reduced birth weight and impacted more on intermediary 

metabolism, in particular, glucose-insulin homeostasis. Nutrient sensitive periods during in utero 

development and infancy have been identified in a number of mammalian species (reviewed by 

Sinclair and Singh, 2007; Fowden et al., 2010) and knowledge of these stages offers the prospect 

of remedial dietary interventions (Vickers, 2011). Perhaps not surprisingly most reports of dietary 

interventions are in rodents fed mLPD. These interventions typically involved supplementation 

with various one-carbon metabolites (i.e. methionine, folate, choline or taurine). However, 

neonatal leptin treatment of rats born following maternal under-nutrition has been shown to 

prevent the onset of diet-induced obesity and metabolic syndrome in later life. Similarly, post-natal 

leptin therapy can partially reverse naturally-occurring litter associated intra-uterine growth 
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restriction and metabolic sequelae in piglets by correcting growth rate, body composition and the 

development of organs involved in metabolic regulation (Attig et al., 2008).  

Studies in sheep have also investigated effects of nutrient restriction at different stages of 

gestation on aspects of MetS. For example, Gopalakrishnan et al. (2004) fed pregnant ewes to 

either 100% AFRC (1993) recommended intake from conception to term, or 50% recommended 

intake to Day 95 and 100% thereafter. In the absence of differences in birth weight and subsequent 

growth, they observed increases in mean arterial blood pressure and heart rate in 3-year old 

offspring exposed to nutrient restriction during early- to mid-pregnancy. Encouraged by these 

observations a follow-up study by the same group limited the period of nutrient restriction to the 

first 30 days of gestation and assessed cardiovascular function in offspring at 1 year of age. Once 

again, neither birth weight nor post-natal growth was influenced by treatment. However, evidence 

of cardiovascular dysfunction, including a blunted baroreflex function and heightened sensitivity 

of the renin-angiotensin system (both of which are predictive of late-onset hypertension) were 

evident in these young animals (Gardner et al., 2004).      

The peri-conceptional period has attracted particular attention in recent years, not least because 

it is acknowledged as the period when the mammalian genome is most sensitive to 

environmentally induced epigenetic dysregulation (Sinclair and Watkins, 2013) (see also Section 

2). Defining this period in humans (Steegers-Theunissen et al., 2013) proposed a 24-week period 

from 14 weeks prior to mating (when ovarian follicles commence their growth phase) to 10 weeks 

following mating, coincident with closure of the secondary palate of the embryo. As discussed by 

(Sinclair and Singh, 2007), nutrient restriction during early pregnancy is of interest to clinicians as 

up 80% of women encounter symptoms of nausea and vomiting (termed morning sickness) 

leading to modest weight loss between weeks 4 and 12 of gestation. Somewhat paradoxically, 

mild forms of this condition are associated with positive pregnancy outcomes in terms of increased 

placental development and reduced risks of miscarriage, low birth weight and perinatal death. The 

chronology of these developmental processes in ruminants is strikingly similar to that of humans, 

where modest nutrient restriction in mature ewes of good but not poor body condition can also 

enhance placental development (Robinson et al., 2000). 

Studies in rodents fed mLPD for variable periods, spanning conception ± 4 days, reported 

increased systolic blood pressure and other specific features of MeS in 6 to 12 month-old adult 

offspring (Kwong et al., 2000; Watkins et al., 2008; Watkins et al., 2011). In ewes, physiologically 

relevant reductions in specific dietary B-vitamins (i.e. B12, folate) and methionine from 8 weeks 

prior to 1 week following mating led to genome-wide epigenetic modifications to DNA methylation 

in their progeny, which as 2-year old adults were hypertensive and exhibited additional signs of 

‘metabolic syndrome’ including insulin resistance; effects most pronounced in male offspring 

(Sinclair et al., 2007). 

 
3.2. Animal welfare 
 
In animal welfare terms, the responses of interest are those that alter the ability of the animal to 

respond appropriately to the environment in which they are managed, either through changes in 

behavioural adaptations, stress physiology and responsiveness or immune responses, and hence 

disease susceptibility. These effects are of relevance to the animal itself, but also to the farmer as 

they can affect mortality and morbidity, disease susceptibility, reactiveness of animals to common 

on-farm practices (e.g. vaccine responses can be reduced in animals that find handling very 

stressful), and ease of handling. The prenatal, and early postnatal, period is of critical importance 

in defining how individuals respond to their environment throughout life. This has been the subject 
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of several recent reviews in farm livestock demonstrating the important role that variation in 

maternal state can have on progeny health and welfare (Braastad, 1998; Bell, 2006; Greenwood 

et al., 2010; Rutherford et al., 2012; Merlot et al., 2013). Prenatal stress or sub-optimal maternal 

nutrition have both been shown to affect how well offspring cope with their social, physical and 

infectious environment. To date, work in cattle investigating such effects has been limited. 

However, studies do show that maternal health, nutrition and experiences of stress in pregnant 

dairy cattle can affect their progeny (Arnott et al., 2012). More extensive studies exist in sheep, 

particularly investigating the impact of prenatal nutrition on subsequent responses, but also more 

recently considering the impacts of different stress paradigms.  

 

3.2.1. Impact of the prenatal environment on birth weight and mortality 

Perhaps the best described, and unambiguous, impacts on welfare (and productivity) are the 

effects of early life events on the survival of the offspring. Many studies have investigated the 

causes of offspring mortality, particularly in sheep but also in cattle, and demonstrate that preterm 

delivery, low birth weight, a difficult or prolonged birth process, poor behavioural development in 

early life, and an inability to adjust to postnatal life (e.g. impaired ability to thermoregulate) all 

contribute to an increased risk of mortality. Many of these risk factors have their origins in prenatal 

development of the fetal lamb or calf.  

The single greatest contributor to lamb mortality is birth weight (Dwyer et al., 2003), although the 

relationship is not linear with very low and very heavy lambs having high mortality (Wu et al., 2006, 

Sawalha et al., 2007). Numerous studies consistently show that maternal under-nutrition of the 

ewe in late pregnancy (after day 100) reduces lamb birth weight (e.g. Dwyer et al., 2003, Corner 

et al., 2008, Hammer et al., 2011). Under-nutrition prior to day 100 has variable effects across 

different studies: severe early under-nutrition has a marked impact on birth weight (e.g. reduction 

to 15% requirements for the first 60 days of gestation, (Vincent et al., 1985)) and an equivalently 

large impact on mortality. Moderate under-nutrition in early to mid-gestation generally does not 

affect birth weight except in particularly circumstances: young and growing females (Munoz et al., 

2009) or ewes selected or adapted for a well fed environment (Burt et al., 2007; Rooke et al., 

2010). In these studies mortality was generally not affected if birth weight was not influenced, 

although the study of (Rooke et al., 2010) reports increased lamb mortality with early under-

nutrition (to d90 of gestation), even in the absence of an impact on birth weight. Conversely 

maternal over-nutrition of ewe lambs results in a severe reduction in lamb weight, as the mother 

parturitions nutrient towards growth of their own tissues to a level greater than is achieved by 

under-nutrition (Wallace et al., 2011). Low body weight is associated with slower behavioural 

development (Dwyer et al., 2003), with delays in reaching the udder and sucking which contributes 

to the higher mortality of low birth weight lambs (Dwyer et al., 2001).  

Shearing pregnant ewes has consistently been reported to increase lamb birth weight (Kenyon et 

al., 2003; Kenyon et al., 2005; Corner et al., 2007b; Banchero et al., 2010), particularly if conducted 

during early to mid-gestation (Figure 3.1). Associated with this response are increases in maternal 

feed intake, gestation length and maternal plasma glucose concentrations (Symonds et al., 1988; 

Morris et al., 2000; Keady and Hanrahan, 2009; Banchero et al., 2010). Although shearing is 

associated with a robust stress response in the ewe, these data suggest that its primary impact 

on birth weight is through increased feed intake and hence nutrition of the developing lamb. This 

is supported by studies that mimicked the handling associated with shearing but did not remove 

the fleece, which report no increase in birth weight (Corner et al., 2010). However, although 
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shearing affects birth weight, there is no evidence that this is associated with improved lamb 

survival (Corner et al., 2006; Keady and Hanrahan, 2009). 

 

 

 

 

 

 

 

 

 

Figure 3.1. Birth-weight responses to shearing (increase (%) relative to unshorn ewes) at different 

stages of gestation, showing 95% confidence intervals. R2 = 0.13 (P = 0.042). Mean responses 

are combined for male and female twin and single lambs from the following studies: (Morris et al., 

1999; Morris et al., 2000; Revell et al., 2000; Cam and Kuran, 2004; Corner et al., 2006; Kenyon 

et al., 2006; Corner et al., 2007b and 2007a; Jenkinson et al., 2009; Banchero et al., 2010; Mousa-

Balabel and Salama, 2010; Sphor et al., 2011) 

Other late gestation treatments of the ewe which are associated solely with stress (social isolation 

or aversive handling by humans) have also reported an increase in birth weight (Roussel et al., 

2004; Hild et al., 2011). In addition, shearing studies in late gestation that did not elicit an increase 

in birth weight, have been reported to improve lamb behavioural progression to sucking (Banchero 

et al., 2010), although none of the maternal stress studies report changes in lamb survival. The 

mechanisms underlying these effects are largely unknown. 

In cattle, the major contributor to calf mortality is dystocia, although birth weight and other factors 

are also very relevant. Dystocia is also a risk factor for calf morbidity and mortality in later life 

(Henderson et al., 2011; Arnott et al., 2012; Barrier et al., 2012). The main cause of calving 

difficulty seems to be fetal-maternal disproportion (Arnott et al., 2012), which is likely to be related 

at least partially to prenatal nutrition, although studies of stillborn calves suggest that prenatal 

factors also contribute to the likelihood that calves will not survive the birth process  (Barrier et al., 

2013). Studies of maternal nutrition in cattle are far less numerous than in sheep and generally, 

the impact of maternal nutritional restriction and calf weight are variable. The effects differ 

dependent upon timing, duration and severity of the dietary insult as well as parity of the dams. 

Some studies have found no effect (Carstens et al., 1987, Hough et al., 1990, Martin et al., 1997, 

McGee et al., 2006, Long et al., 2010). These studies were characterised as having a number of 

shortcomings (e.g. low numbers per treatment, small differences between dietary treatments, 

short dietary exposures, or were conducted only during the first trimester. In contrast, other studies 

have reported a reduction in calf birth weight as a consequence of maternal undernutrition during 

the second and/or third trimester of pregnancy (Warrington et al., 1988; Houghton et al., 1990; 

Freetly et al., 2000; Micke et al., 2010a; Micke et al., 2010b). In general, reducing calf birth weight 

by means of maternal dietary restriction does not reduce the incidence of dystocia or calf morbidity. 

This is due to effects on both maternal physiology as well as altering humoral immune status in 
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the calf (McGee et al., 2006). In a few studies, however, cow nutrition has been linked to calf 

mortality (e.g. when cows were kept on an energy restricted diet in late gestation – led to reduced 

birth weight and increased neonatal morbidity (diarrhoea) and mortality in crossbred beef calves 

(Corah et al., 1975).  

 

Calf birth weight and survival can be influenced by environmental conditions, independent of the 

nutritional status of the mother. Both heat (Collier et al., 1982) and cold exposure (Andreoli et al., 

1988) in gestation are reported to reduce calf birth weight, and this is associated with increased 

calf mortality and morbidity (Azzam et al., 1993). Gestation length is also often reduced by heat 

stress (Table 3.1), but (Tao et al., 2012) calculated that the reduction in gestation length accounted 

for only around one third of the reduction in birth weight as a consequence of heat stress.  Drought 

exposure of pregnant cattle can profoundly influence offspring development and survival (Arnott 

et al., 2012). In particular this has been associated with a condition in beef calves termed 

congenital chondrodystrophy of unknown origin (CCUO; White et al., 2010a), where failure in long 

bone growth results in disproportionate dwarfism, breathing difficulties and perinatal death 

(McLaren et al., 2007). This condition seems to occur as a result of maternal malnutrition in early 

gestation as a consequence of severely reduced rainfall (White et al., 2010b). 

 

Table 3.1. Effect of heat stress in cattle on gestation length and birth weight (data from Tao and 

Dahl, 2013) 

 

Gestation (days) Fetus / birth weight (kg) 
Reference 

Heat stress Control Heat stress Control 

281 281 36.6* 39.7 (Collier et al., 1982) 

  40.6 43.2 (Wolfenson et al., 1988) 

  33.7* 37.9 (Avendaño-Reyes et al., 2006) 

274 278 40.8* 43.6 (Adin et al., 2009) 

  31.0* 44.0 (do Amaral et al., 2009) 

  39.5* 44.5 (do Amaral et al., 2011) 

274 277 41.6* 46.5 (Tao et al., 2011) 

272 276 36.5* 42.5 (Tao et al., 2012) 

* Statistically significant reduction relative to control calves. 

 

In both cattle and sheep, maternal health in pregnancy contributes to the survival and growth of 

the offspring. Treating sheep for footrot was associated with an increase in the number of lambs 

reared (Wassink et al., 2010), whereas an outbreak of sheep scab during pregnancy led to a 

decrease in lamb birth weight (Sargison et al., 1995). In a Swedish study on dairy cattle (Lundborg 

et al., 2003) found that calf birth weight was reduced if the gestating mother had had mastitis 

during the 49 day period to calving. Several studies have also reported decreased calf growth rate 

if the mothers experienced disease during pregnancy (reviewed by Arnott et al., 2012). Health 

treatment decisions during pregnancy can also impact on calf outcomes. For instance, (Lents et 

al., 2008) found that calf growth was improved when beef cows were treated with dry cow antibiotic 

therapy. Alternatively, a failure to treat cows for parasite infection during pregnancy reduced calf 
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birth weight and subsequent weaning weight (Loyacano et al., 2002). The mechanism for these 

effects is unclear. It may be a consequence of direct immune communication between mother and 

her developing offspring, or occur indirectly via maternal stress or pain, or a reduction in feed 

intake that often accompanies ill health.   

 

3.2.2. Impacts of the fetal environment on stress responsiveness 

Common farm husbandry practices, such as restraint, handling and transportation, are associated 

with stress responses indicating activation of the hypothalamo-pituitary adrenal (HPA) axis (e.g. 

Roussel et al., 2006; Roussel-Huchette et al., 2008). This axis represents a hormonal cascade 

where increased expression of corticotropin-releasing-hormone (CRH) in the paraventricular 

nucleus of the hypothalamus, stimulates release of adreno-corticotropic-hormone (ACTH), from 

the pituitary. ACTH subsequently stimulates the release of glucocorticoids (cortisol or 

corticosterone in some species) from the adrenal gland. Cortisol plays a role in numerous 

biological systems within the body, but its primary role within the stress response system of the 

body is to mobilise energy reserves.  

In rodent models, prenatal stress (classically induced by restraining the mother regularly over the 

last half to third of pregnancy) is known to cause long-lasting changed in the HPA axis of the 

offspring associated with an increased reactivity (Henry et al., 1994). This is associated with 

behavioural disturbances characterised by high anxiety and depressive-like behaviour, and 

impaired memory for hippocampus-dependent tasks, e.g. spatial tasks (Darnaudery and Maccari, 

2008). However, many studies report sex-dependent impacts with males typically showing an 

increase in anxiety after prenatal stress and dysmasculinised behaviours, whereas females show 

converse behavioural responses (Zuena et al., 2008; Bale, 2011). The release of glucocorticoids 

by the stressed mother, which can cross the placenta to influence the developing offspring, appear 

to mediate these responses (Mesquita et al., 2009; Harris and Seckl, 2011) and alteration of over 

700 genes, in a region- and sex-specific manner have been reported (Mychasiuk et al., 2011). 

Epigenetic alterations in the offspring brain are known to follow prenatal stress (Gudsnuk and 

Champagne, 2012), accompanied by changes in the development of neurogenesis, particularly in 

the hippocampus (Korosi et al., 2012). Very recently, evidence has also emerged for an impact of 

paternal stress on the stress reactivity of his offspring in rats (Mychasiuk et al., 2013). Stress of 

males during spermatogenesis before conception reduced learning responses and reduced stress 

responsiveness male offspring, and had sex-specific impacts on DNA methylation patterns.  

In farm animals a detailed mechanistic understanding of the effects of maternal stress is lacking. 

However, the clear impact of maternal, and paternal, stress on the subsequent behaviour and 

stress responsiveness of the offspring in rodents suggests that similar mechanisms may operate 

in cattle and sheep. To date experimental studies have focussed on assessing HPA axis function 

(such as release of cortisol and/or ACTH) or the altered behavioural stress responsiveness of the 

offspring either in response to pharmacological challenge or when exposed to an environmental 

or social stressor. Table 3.2 details the effect on HPA axis function in lambs that has been 

observed following maternal undernutrition in pregnancy, or after maternal stress. Responses are 

variable (partly related to inconsistency between studies in time at which the offspring were 

assessed), but do suggest some sex-specific variation as seen in rodents (e.g. Gardner et al., 

2006), and differences in responses when lambs are younger or older. Studies in cattle are very 

scarce, but (Lay et al., 1997) showed that repeated transportation of Brahman cows during 

gestation increased the cortisol response of the progeny to an acute restraint stress.  
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Table 3.2. Studies investigating progeny stress responses as a consequence of maternal stress 

or under-nutrition in sheep 

Study  Gestation day Effect on Progeny 

A. Under-nutrition   

(Bloomfield et al., 2003) 105 to 115 Increased ACTH response to CRH/AVP 

challenge, and increased baseline 

concentrations of cortisol and ACTH 

 105 to 125 No effect on ACTH response to CRH/AVP 

challenge, or baseline concentrations of 

cortisol and ACTH. 

(Gardner et al., 2006) 0 to 30 CRH/AVP challenge produced a lower 

ACTH and cortisol response in female, but 

not male, UN lambs. 

(Chadio et al., 2007) 30 to 100 No effect on ACTH and cortisol response to 

CRH at 2 months old. 

 1 to 30 Increased ACTH and cortisol response to 

CRH at 2 months old. 

(Hernandez et al., 2010) 2 to 30 No effect at 4 months of age on cortisol 

response to isolation. 

Reduced cortisol response to isolation at 18 

months of age. 

(Long et al., 2010) 28 to 105 No change in response to CRH/AVP or 

ACTH. Reduced ACTH and cortisol 

response to environmental stressors. 

B. Maternal nutrition   

(Roussel et al., 2004) 110 to 150 No effect on cortisol response to isolation. 

(Roussel-Huchette et al., 

2008) 

110 to 150 No effect on cortisol response to isolation 

(Fisher et al., 2010) 135 to 138 Reduced febrile and cortisol responses to 

endotoxin challenge 

 

 

 

3.2.3. Impacts of the fetal environment on aspects of offspring behaviour 
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Unlike the impacts on stress physiology, which frequently report no effect, impacts on offspring 

behaviour are more frequently reported with studies of gestational under-nutrition and maternal 

stress in pregnancy inducing altered behavioural reactivity (Table 3.3). However, some studies 

report an increased behavioural reactivity (e.g. Erhard and Rhind, 2004; Roussel et al., 2004) 

which, in keeping rodent studies, was more pronounced in males than females. Other studies 

suggest that lambs are less reactive to stress (e.g. Roussel-Huchette et al., 2008; Hernandez et 

al., 2010).   

Table 3.3. Sheep studies investigating progeny behaviour as a consequence of maternal stress 

or under-nutrition. 

Study 

Maternal Treatment 

(Stage of gestation) 

Effect on Progeny 

(Erhard and Rhind, 2004) UN 0 to 95 Higher activity during restraint in male, but 

not female, lambs. Longer approach latency 

to novel object. Male UN lambs more active 

in response to startle than controls. 

In a maze test male lambs from UN ewes 

showed reduced learning speed. Behavioural 

laterality of lambs was also altered  

(Hernandez et al., 2010) UN 0 to 30 Lambs born to UN ewes made fewer escape 

attempts during a five minute isolation test at 

4 months of age. 

(Simitzis et al., 2009) UN 31 to 100 No effect on response to isolation with a 

novel object at 2, 3, 4 and 5 months of age. 

(Hernandez et al., 2009) UN 0 to 30 Behavioural laterality of lambs was altered 

(Roussel et al., 2004) Stress 110 to 150 At 8 months of age: increased jumping during 

isolation; increased activity after exposure to 

novel object; increased exploration of novel 

object; higher frequency of changes between 

light and dark compartment. 

(Roussel-Huchette et al., 

2008) 

Stress 110 to 150 At 3 months of age: males spent increased 

time close to novel object; males reduced 

jumping in novel arena test. No effect on 

female lambs. 

(Coulon et al., 2011) Stress 110 to 145 Reduced activity in human approach test. 
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3.2.4. Prenatal influences on welfare: summary and interim conclusions 

Across both species it is difficult to draw firm conclusions about specific effects which could be 

communicated to farmers (with the exception of the already well known effects of poor nutrition in 

late gestation in sheep). Yet the collected studies do provide evidence that variations in the 

prenatal environment, as dictated by the management of the pregnant mother, can contribute to 

animal welfare outcomes in both sheep and cattle. In particular the impact of maternal ill-health or 

disease in pregnancy on offspring birth weight and growth is important. 

Research in cattle is limited with respect to health and welfare outcome of maternal challenges 

during gestation. Negative effects on birth weight may suggest possible postnatal problems, but 

direct demonstrations of welfare deficits are rare. Periods of severe under-nutrition during 

gestation can have very obvious negative effects on health and welfare (chondrodistrophy studies; 

White et al., 2010a; White et al., 2010b), but little is known about more subtle and commercially 

relevant effects.  

In some instances, in sheep, experience of maternal stress during pregnancy can lead to 

apparently improved welfare status in offspring. Shearing during pregnancy has well known 

beneficial effects on birth weight for example (Kenyon et al., 2003). Other repeated stress 

treatments (Roussel et al., 2004; Roussel-Huchette et al., 2008) have also been shown to cause 

changes in progeny that can be interpreted as being positive. 

 

3.3. Immune function and health 

Opportunities to manage pregnant livestock in ways that increase the likelihood that their offspring 

have attributes that promote animal well-being, productivity and consumer acceptance raise the 

question of whether immune function can be prenatally programmed.  Immune competence can 

be assessed in numerous ways, including the ability of the individual to mount an effective immune 

response, functionally mature immune organs and cells and by appropriate concentrations of key 

cytokines, immunoglobulins, acute phase proteins and other molecules. In the context of livestock 

production the most relevant and therefore frequently studied parameters include the acquisition 

of passive immunity, as measured by concentrations of immunoglobulins in offspring, parasite 

resistance and the development of key organs of the immune system, such as the thymus.  

Alterations in maternal nutrient quantity and composition, and both social and thermal stresses 

during pregnancy affect various measures of livestock offspring immune status, although few 

comprehensive studies have been reported in ruminants. In addition, as most of the perturbations 

imposed during pregnancy affect the hypothalamic-pituitary-adrenal (HPA) axis and the metabolic 

status of the maternal body, programming effects on offspring immune function could occur either 

directly or be mediated by an up-regulation of the HPA axis or alterations in the metabolism of 

glucose, a major immune system substrate. 

Although most studies addressing fetal programming of immune competence have focussed on 

laboratory species, there are compelling reasons to believe that the fetuses of livestock species 

may be more susceptible to the effects of the maternal environment. The immune systems of 

mammals that give birth to precocious offspring, such as sheep, cattle and pigs, develop 

predominantly in utero and hence represent a potential target for fetal programming. For example, 

in sheep the development of the thymus commences in early gestation and CD5 T cells appear 

by day 35 and are soon followed by CD8 and CD4 T cells (Cronje, 2003). Circulation of 

lymphocytes begins between days 70 – 75 of fetal life and by day 80, the cellular and 
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immunohistological appearance of the ovine thymus is identical to the post-natal thymus (Cahill et 

al., 1999). By parturition, the central and peripheral lymphoid systems of the ovine fetus are at an 

advanced stage of development (Cunningham et al., 1999). 

Passive immunity in neonates of ruminant species is predominantly acquired by the uptake and 

absorption of immunoglobulins in colostrum, rather than placental transfer.  Alterations to both the 

quantity (Hammer et al., 2011) and the micronutrient composition (reviewed by Rooke et al., 2008) 

of the diet offered to the pregnant ewe can affect the serum immunoglobulin G (IgG) content in 

her lambs. Such effects could be mediated by altered composition of colostrum and/or the amount 

ingested by the neonate or the ability of the neonatal gut to absorb immunoglobulins. For example, 

low periconception levels of cobalt/Vitamin B12 reduced serum IgG in 2 and 4 week-old lambs 

(Fisher and Macpherson, 1991), whereas some studies report an increase in lamb plasma IgG 

concentrations following vitamin E supplementation before lambing (Gentry et al., 1992). Excess 

intakes of minerals during pregnancy do not alter colostrum IgG content, but impair 

immunoglobulin absorption in lambs, and this appears to be largely attributable to the iodine 

component of the mineral mix (Boland et al., 2005). Generally, under-nutrition during early- 

(Munoz et al., 2009) or late- (Hammer et al., 2011) pregnancy increased lamb plasma IgG 

concentrations at birth and 24 hours of age, respectively.  The study of (Hammer et al., 2011) is 

of particular interest, as lambs were removed from their mothers before suckling and fed colostrum 

replacer and so the differences in lamb IgG absorption were independent of maternal colostrum 

production. An increase in serum IgG levels in lambs born to under-nourished ewes appears 

counter-intuitive, but speculation about under-lying mechanisms is difficult given the absence of 

data on colostrum composition, intake or lamb plasma volume.   

In cattle, heifers born from cows exposed to natural summer heat stress during the last 45 days 

of pregnancy had lower serum concentrations of IgG after colostrum consumption than heifers 

born to mothers receiving a cooling treatment, despite similar colostrum IgG concentrations and 

feeding levels (Tao et al., 2012). It has been suggested that alterations in the profile of maternal 

glucocorticoids following maternal stress may accelerate neonatal gut maturation (Merlot et al., 

2013), leading to reduced immunoglobulin absorption. 

Measures of acquired immune function of offspring whose mothers were subjected to different 

pregnancy regimens are varied; with differences between breeds and breeding seasons and it is 

difficult to consolidate current findings. For example, in one year of a study conducted over 2 

consecutive years in which Scottish Blackface and Suffolk ewes received either maintenance or 

75% maintenance rations during days 1 to 90 of pregnancy the offspring of under-fed Suffolk, but 

not under-fed Scottish Blackface, ewes had higher Strongyle fecal egg counts at weaning age 

(Rooke et al., 2010). The differences between breeding seasons could be attributed to a range of 

factors including differences in lamb postnatal growth and grazing behaviour. It is of interest that 

the breed by maternal nutrition interaction affected lamb spleen and thymus weight (Ashworth, 

Hogg, Matheson, Dwyer and Rooke, unpublished data) as the thymus has been proposed as a 

possible mediator of the effect of pre-natal nutrition on immune competence in later life (Cronje, 

2003). In cattle, heat stress during late gestation reduced blood lymphocyte proliferation in female 

offspring until 56 days of age (Tao et al., 2012), providing evidence that a specific prenatal 

treatment can affect both passive and acquired immune function in offspring. This had previously 

been observed in sheep where a maternal periconceptional diet deficient in elemental cobalt and 

sulphur altered both the innate and acquired immune function of offspring at 12 months of age 

(Sinclair et al., 2007). Relative to matched controls, both the acute-phase (serum haptoglobin) and 

adaptive (serum IgG) responses to purified ovalbumin in Quil A adjuvant were increased in 12-
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month old lambs from ewes fed a cobalt and sulphur deficient diet prior to and around the time of 

mating. 

 

4. Programming of body composition 

 

To understand how nutritional and epigenetic factors during early development can impact upon 

future body composition of the offspring, it is necessary to consider the origins and developmental 

trajectories of the cells that form the functional tissues, particularly muscle and adipose tissue. 

The processes that drive muscle formation, myogenesis, have been well studied in a number of 

systems, whereas adipogenesis, the formation of fat cells (adipocytes), is much less well 

characterised. 

 

4.1. Evidence for programming of skeletal muscle  

 

Myogenesis is the term used to describe the processes whereby pluripotent embryonic cells 

become committed to the muscle cell lineage and subsequently proliferate and fuse together (i.e. 

differentiate) to form large multinuclear cells called myotubes (in in vitro studies) or muscle fibres 

(in in vivo studies). Evidence to date suggests that the processes and regulatory factors involved 

are very similar across mammals, birds and fish, but that the timings for when they occur can be 

quite different. There are numerous reviews (e.g. Brameld and Daniel, 2008; Rehfeldt et al., 

2011b) describing this process and the factors that regulate it, including cross-species 

comparisons (Rehfeldt et al., 2011a). 

 

In all vertebrates the muscles of the trunk and limbs are derived from segmented embryonic 

structures known as somites that also produce vertebrae, ribs, tendons and dermis. Within somites 

muscle progenitor cells are specified and begin to differentiate into the primary myotome. These 

early proliferative progenitors, known as myoblasts, subsequently differentiate and fuse to form 

the multinucleated functional adult muscle cell (the muscle fibre). Several genes have been shown 

to be required for this process. Specification and proliferation of myoblasts depends on expression 

of the transcription factors, Pax3 and Pax7, while Myogenic Regulatory Factors, a group of related 

muscle-specific transcription factors, are involved in both the later stages of myogenic 

differentiation as well as specification and proliferation of the myoblasts (Buckingham, 2007; Mok 

and Sweetman, 2011; Sweetman, 2012). 

 

Within the embryo, different muscle groups follow distinct developmental routes (Buckingham and 

Vincent, 2009). Trunk and back muscles are derived directly from the primary myotome, which 

extends into the regions where the adult muscles will be located and is then able to grow and form 

the adult muscular pattern. In contrast, other muscles such as the limb muscles come from 

myoblasts which delaminate from somites and then migrate into the developing limbs (Figure 4.1). 

This also includes some muscles of the pelvic and pectoral girdles that develop from limb muscle 

cells which, having migrated into the limbs, then migrate out again to populate these regions 

(Figure 4.1). This is known as the ‘in-out mechanism’ (Evans et al., 2006; Valasek et al., 2011). 

Understanding the different origins and developmental processes that generate various muscle 

types will be important in designing interventions that target these muscles. 
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Figure 4.1.  Cells of the dorso-medial region of somites form the dermomyotome (DM, yellow). 
The myotome (green) is formed when DM cells migrate around the edges to form an underlying 
layer of cells where the first muscles of the embryo begin to differentiate (A). Trunk muscles are 
formed when the myotome extends ventrally into the body wall (B) while limb muscles are derived 
from myoblasts which delaminate from the DM and migrate into the limb. Some of these cells then 
subsequently migrate back into the trunk to form some of the muscles of the pectoral and pelvic 
girdles (C). 
 

 

Before fibre formation, the mononuclear myoblasts continue to proliferate and thereby increase in 

number, whereas fibre formation involves the myoblasts exiting the cell cycle and fusing together 

(i.e. differentiation) to form the multinuclear fibres containing all the contractile proteins and 

structures required for muscle function. Dependent upon the species of interest, this fibre 

formation occurs in 2 or 3 phases. The initial phase of differentiation and fusion of myoblasts 

generates the primary muscle fibres. These provide the scaffold on which the adult musculature 

is built and so are responsible for generating the mature muscle pattern. Following formation of 

primary fibres further rounds of differentiation and fusion occur, such that secondary muscle fibres 

form around each primary fibre, with tertiary fibres described as forming between the secondary 

fibres in some larger mammals, including sheep (Wilson et al., 1992). The main difference 

between species is the time at which these phases of fibre formation take place, with fibre 

formation in most large mammals (including sheep, cattle and humans) believed to be completed 

by the middle of gestation, whereas poultry and small mammals (e.g. rats) continue fibre formation 

for a limited period after hatch/birth (see Brameld and Daniel, 2008; Rehfeldt et al., 2011b).  

 

Hence, the number of muscle fibres in sheep and cattle is believed to be set at the time of birth 

and subsequent muscle growth is driven by increases in fibre size (i.e. hypertrophy) rather than 

fibre number (Buttery et al., 2000). Because of this it is critical to understand how changes during 

development can influence muscle fibre number, as changing this may directly affect meat quality 

and yield. The central question underlying approaches to maximise muscle production is how to 

control the switch from the early, proliferative myoblast to the differentiated muscle fibre. Methods 

to increase the numbers of myoblasts by increasing their proliferation rate or delaying their 

differentiation have the potential to lead to increased muscle fibre numbers and therefore 

increased muscle mass in adult animals. 
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Another important consideration in muscle fibres is the distinction between fast and slow fibres. It 

is thought that primary fibres initially become slow fibres, whereas secondary and tertiary fibres 

initially become fast fibres. In adult muscle, fast fibres tend to be larger, especially if they are 

frequently used, but this size difference is not clear in younger animals. It appears that this initial 

relationship between primary/secondary and slow/fast fibres is lost as the animal develops, 

probably because the fibres are able to change fibre type and that the proportions of fast and slow 

fibres can impact on muscle mass. Unlike rodents where individual muscles are classified as fast 

or slow, in large mammals all muscles are mixed fibre types and the relative proportions of the 

fibre types can be altered during development or adult life. 

 

 

4.1.1. Muscle fibre number (MFN) 

A number of studies have shown that the numbers of muscle fibres that form in various animal 

species can be altered via genetic (e.g. double muscling in cattle) or environmental (e.g. maternal 

nutrition or administration of hormones) factors, but only if the environmental insults take place at 

specific times during gestation (see Brameld and Daniel, 2008; Rehfeldt et al., 2011b and 2011a). 

Table 4.1 summarises the studies published to date investigating the effects of maternal nutrition 

on muscle fibre formation in sheep. It is clear that effects of nutritional insults on the pregnant ewe 

during the critical period of muscle development (early gestation) can be detected in young 

offspring (late gestation fetuses or neonates), but these effects tend to be lost (or are too difficult 

to detect) in older sheep. The main effect observed in the young lambs/fetuses is a change in the 

numbers of secondary fibres formed and/or the ratio of secondary fibres to primary fibres (often 

determined as fast:slow ratio). Since fibre formation is thought to be complete at this stage in 

sheep muscle development, it might be predicted that the changes in numbers of fibres would be 

permanent and may therefore impact upon subsequent carcass quality, particularly lean muscle 

mass. Studies to date would appear to suggest this is not the case, but this may be due to the 

capacity for skeletal muscle to adapt during postnatal growth via changes in fibre type and 

metabolism or the difficulty with the measurements in larger muscles from older animals. It is worth 

mentioning that the few studies to date that have taken the lambs to market weight or beyond 

have all provided good quality diets during the postnatal growth period. It is not known whether 

the animals would still be able to compensate/adapt if they were on a relatively poor diet or were 

challenged in some other way. 

 

 

4.1.2. Muscle mass or size 

 

Although there appear to be no long term effects of maternal nutrition on muscle fibre numbers 

and/or diameters (in sheep), there are suggestions that pre-natal environmental factors can affect 

certain measures of lean muscle mass and/or carcass composition. The effects on various 

measures of adiposity will be the focus of the next section, but some studies have observed 

differences in muscle related carcass measurements. For example, some studies have observed 

differences in cross-sectional area (CSA) of individual muscles as measured using ultrasound or 

following muscle dissection after slaughter. However, these effects tend to be largely dependent 

upon the sex of the animals, with effects only seen in males or females at a particular stage of 

growth. It is therefore unclear as to how permanent these effects are or the mechanisms involved, 

although sex steroids (oestrogens and/or androgens) may obviously play a role. A number of 

studies have been carried out on cattle in Australia, as part of the Australian Beef Cooperative 

Research Centre (see Robinson et al., 2013). Effects specific to maternal nutrition during 

pregnancy are difficult to pick up in these studies since they also manipulate postnatal nutrition as 
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well, but importantly they suggest that the effects of maternal nutrition during pregnancy and 

lactation are additive and the authors appear to suggest that a life-time approach should be taken 

rather than simply investigating the effects at a particular stage of development (Robinson et al., 

2013). 

 

 

4.1.3. Genetic control of muscle growth 

 

As muscle formation and growth is a complex process involving numerous biological processes 

there are, unsurprisingly, many genes involved. One area that has been particularly interesting is 

the investigation of the genetics relating to signalling molecules involved in myogenesis. 

Experiments in various model systems, such as mice and chickens, have uncovered a range of 

signals that can influence the rate of myoblast proliferation, differentiation and fibre type (Duprez, 

2002). However, the exact mechanisms that leads to muscle growth, even for very well 

characterised signals with long established roles, such as the IGF family (Schiaffino and 

Mammucari, 2011), remain to be established. 

 

One of the most important examples of this type of molecule is myostatin, a secreted member of 

the transforming growth factor-β (TGFβ) family that negatively regulates muscle growth. Myostatin 

mutations have been identified in many animal lines selected for high muscle growth (Lee, 2004), 

such as Belgian blue cattle (McPherron and Lee, 1997), elite sheep (Tellam et al., 2012), as well 

as high growth chickens (Bhattacharya and Chatterjee, 2013). A number of mutations in myostatin 

have been shown to lead to loss of functional protein, resulting in increases in both muscle fibre 

number and size. Interestingly, at least some of these effects take place in the developing fetus 

and are associated with increased rates of muscle cell proliferation and delayed differentiation 

(Gerrard and Grant, 1994), resulting in increased numbers of muscle fibres at birth. These are the 

same mechanisms as those proposed for the effects of maternal nutrition and environmental 

factors on MFN in the developing fetus (see above). In Texel sheep a mutation has been identified 

in the 3’UTR of the myostatin mRNA that creates a binding site for the muscle specific microRNA 

miR-1/206. This leads to muscle-specific down-regulation of myostatin protein levels and 

increased muscle mass (Clop et al., 2006). A transgenic sheep line has recently been generated 

with artificial RNAi which mimics this effect and these sheep also show increased muscle mass 

(Hu et al., 2013a). However there are also some breeds of cattle (Smith et al., 2000) and pigs 

(Jiang et al., 2002a; Jiang et al., 2002b) with similar or other mutations in the myostatin gene that 

do not show the double muscling phenotype, suggesting that other factors are also involved. 

 

Another example of a signalling pathway with direct relevance to animal production is seen in 

Callipyge sheep. These sheep have a complex genotype with a mutation in an imprinted regulatory 

region which leads to increased expression of DLK1, part of the Notch/ Delta signaling pathway. 

Overexpression of DLK1 in skeletal muscle leads to increased muscle mass (Davis et al., 2004) 

and is also up-regulated in broiler chickens (Shin et al., 2009), suggesting that it might be a good 

target for intervention in various species. It appears that the callipyge phenotype relates mainly to 

changes in post-natal, rather than pre-natal, muscle growth, but it does have a complex inheritance 

pattern (see Georges et al., 2003). However, Callipyge sheep produce tough meat (Koohmaraie 

et al., 1995), which is thought to relate to decreased protein degradation pre- and post-mortem 

due to increased levels of calpastatin, the endogenous inhibitor of the calpain proteolytic enzymes. 

 

 

4.1.4. Epigenetic programming of muscle development 
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There appear to be no studies to date investigating whether the effects of environmental factors 

on muscle fibre formation are associated with changes in epigenetics (e.g. DNA methylation 

patterns). The main hypothesis investigated in this area relates to genetic mutations or 

environmental insults altering the rates and/or timings for muscle cell proliferation and 

differentiation (see Brameld and Daniel, 2008), so it is unclear as to whether epigenetic 

mechanisms are involved. 

 

Although there are limited data from large animals there have been many studies on epigenetic 

control of muscle development in cell culture systems and model animal species. Expression of 

myogenin is a key step in myogenic differentiation and changes in DNA methylation patterns at 

this locus have been identified as differentiation proceeds and this gene is induced (Fuso et al., 

2010; Palacios et al., 2010). The ability of MyoD to bind DNA and induce expression of muscle 

determining genes is also regulated by epigenetic changes to binding sites in the promoters of its 

target genes (Fong et al., 2012). Current work is beginning to identify the dynamic changes in 

DNA modification that underlie the different stages of myogenic commitment and differentiation 

(Tsumagari et al., 2013) and global changes in DNA methylation patterns have been mapped in 

fast and slow growing strains of chicken, providing evidence for a direct epigenetic influence on 

muscle growth (Hu et al., 2013b). It is also becoming apparent that long non-coding RNAs play an 

important role in regulating muscle growth, at least in part by controlling muscle specific promoter 

activity (Mousavi et al., 2013). The interplay between muscle specific gene transcription, 

epigenetic regulation and chromosomal dynamics is at the forefront of current research in 

myogenesis and is likely to have profound effects on animal production as these results are 

translated to sheep and cattle. 

 

 

4.1.5 Interim conclusions 

 

The basic molecular mechanisms that drive muscle formation are fairly well understood and it is 

clear that different muscles use specific variations of this developmental programme. Of particular 

interest is determining how maternal effects can influence this process, especially in terms of how 

proliferation versus differentiation is determined, how primary and secondary muscle fibre 

formation is altered by these cell fate decisions, how fibre type is regulated and whether these 

processes can be influenced to enhance production. The data to date would appear to suggest 

relatively small (if any) long-term effects of maternal nutrition on MFN or % fibre types in sheep, 

but all studies have provided good quality diets during the post-natal growth. Whether the same 

would be true if lambs were subjected to poor(er) quality diets or other challenges during postnatal 

growth is not known. 

 

4.2. Evidence for programming of body fat 

 

In contrast to muscles the developmental processes leading to the formation of mature adipose 

tissue cells (adipocytes) are poorly understood; however some recent work has given insights into 

this process (Billon et al., 2008; Berry et al., 2013). In general, adipocytes can be divided into two 

types, white and brown. Brown adipose tissue (BAT) adipocytes contain numerous small lipid 

droplets, have large numbers of mitochondria and provide the main mechanism for maintaining 

body temperature via heat production in cold exposed rodents. White adipose tissue (WAT) 

adipocytes contain a single large fat droplet and are the classical fat cell type used for long term 

storage of excess energy in the form of triacylglycerol (TAG). Although brown fat has been 
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predominantly associated with young animals (e.g. new born lambs), recent work has also 

identified BAT deposits in adult animals as well (Billon and Dani, 2012). This division into WAT 

and BAT has been questioned recently and it has been shown that animals raised in cold 

conditions also have extensive brown-like adipocytes in their WAT fat depots, with such cells now 

referred to as either BRITE or Beige adipose cells (Wu et al., 2012) It is unclear if these cells are 

white cells that have changed their phenotype or if they are brown cells that form in the WAT from 

a separate stem cell population or a mixture of both (Liu et al., 2013). 

 

Perhaps surprisingly the development of adipose tissue is far less well characterised than that of 

muscle. BAT, but not WAT, has been shown to derive from early myoblasts (Seale et al., 2008), 

so shares an origin with muscle cells, but the source of WAT adipocyte precursor cells remains 

largely unknown. One recent study has shown that some neck WAT depots are colonised by 

neural crest cells (Billon et al., 2007), migratory multipotent cells from the dorsal neural tube, but 

very little is known about the origins and signals that regulate WAT adipocyte formation. As a 

result there are also fewer well established molecular markers of specific developmental stages 

of adipocyte cell formation available to inform studies of how maternal influences can affect 

adipose development. Indeed those molecular markers that have been identified as transcriptional 

regulators of adipogenesis (e.g. CEBPα and β, PPARγ) are common to both BAT and WAT 

adipocytes. In all cases, these factors are involved in the differentiation of the proliferative 

precursor cells called preadipocytes into terminally differentiated (non-proliferative) adipocytes. 

The main differences identified to date (mainly in rodent studies) are that BAT adipocytes tend to 

have higher expression of genes relating to mitochondrial biogenesis and oxidative metabolism 

(e.g. PGC1α), with the only BAT-specific protein being Uncoupling protein-1 (UCP-1), the key 

mitochondrial protein involved in the heat generating properties of BAT. 

 

4.2.1. Body fat/adiposity 

 

As a general observation, measures of adiposity tend to go in the opposite direction to measures 

of lean or muscle mass. For example, double-muscling in Belgian blue cattle is associated with 

reduced body fat, as well as increased muscle mass and numbers of muscle fibres. A number of 

studies have investigated the effects of maternal nutrition on various measures of adiposity, 

including back fat thickness, individual adipose tissue depot weights, carcass and/or muscle lipid 

content and total body fat. Table 4.2 summarises the studies published to date in sheep. It appears 

that the magnitude and direction of the effect observed is dependent upon the age of offspring 

being studied, but also the timing of the nutritional insult during gestation. In relatively young (late 

fetal or early neonatal) offspring (up to about 77d), the adiposity tends to go in the direction you 

would expect, with reduced nutrition resulting in reduced adiposity and vice versa (Muhlhausler et 

al., 2006; Luther et al., 2007). Then there appears to be an age period that would include normal 

market weight lambs in the UK (up to 4 or 5 months), where little or no effects are observed, 

although females consistently have higher adiposity measures than males. There are then a few 

studies (Daniel et al., 2007; Ford et al., 2007; Sinclair et al., 2007; Jaquiery et al., 2012) where 

maternal food restriction, particularly during early gestation (conception to 80 days), results in 

increased measures of adiposity in older (>6 months) offspring, particularly in males. These latter 

studies would appear to suggest that there may indeed be long-term “programming” of adiposity, 

particularly in the normally leaner males, and that this is not associated with differences in birth 

weight. In contrast, there are a number of studies 
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Table 4.1. Effects of altered fetal nutrition on muscle fibre formation in sheep                                                                                                     (Fahey 

et al., 2005)         ME metabolisable energy; LD longissimus dorsi; ST semitendinosus; VL vastus lateralis; 1º Primary muscle fibres; 2º Secondary muscle fibres; 

I Slow oxidative (SO) fibres; IIa Fast oxidative glycolytic (FOG) fibres; IIx/IIb Fast glycolytic (FG) fibres. 

Time of challenge  Nutritional challenge 
(% ME requirements) 

Fetal/postnatal 
offspring age (d) 

Muscle(s) studied Fibre effects Reference 

A. In utero 

-18 to 6d 50% vs 150% 75 ST Decreased total no. 2º fibres 
No change total no. 1º fibres 
Decreased 2º:1º fibre ratio 
No change in diameters 

(Quigley et al., 
2005) 

28-78d 50% vs 100% 78 LD Decreased 2º:1º fibre ratio (Zhu et al., 2004) 

B. Post-natal 

30-70d 50% vs 100% 14 LD, VL, STa Fast fibres: decreased density, increased diameters 
Slow fibres: increased density 
Decreased fast: slow ratio 

(Fahey et al., 2005) 

55-95d 50% vs 100% 14 VL Fast: increased diameter 
Slow: No effects 

(Fahey et al., 2005) 

55-95d 50% vs 100% 14 LD, ST Fast: No effects 
Slow: No effects 

(Fahey et al., 2005) 

85-115d 50% vs 100% 14 LD, VL, ST Fast: No effects 
Slow: No effects 

(Fahey et al., 
2005)05 

30-85d 50% vs 100% 119 ST (No effects in 
LD, VL) 

IIb/IIx: Increased density (no./µm2) 
I, IIa: No effects 

(Daniel et al., 2007) 

30-70d 50% vs 100% 168 LD (No effects in ST, 
VL) 

Fast: increased density (no/µm2), decreased 
diameter 
Slow: No effects 

(Daniel et al., 2007) 

-30 to 100d 70% vs 100% 203 vs 185  ST No change in total no. fibres 
 

(Nordby et al., 
1987) 

28-78d 50% vs 100% 240 LD Increased total no. fibres (P<0.1) 
Increased % IIb, decreased %IIa 
No effects on % I and IIx 

(Zhu et al., 2006) 
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(Louey et al., 2005; De Blasio et al., 2007; Wallace et al., 2011; Hancock et al., 2012) suggesting 

that low birth weight, often as a consequence of placental insufficiency, is associated with 

increased adiposity in both young and old offspring. There is also one cattle study (Long et al., 

2010) suggesting that over-nutrition throughout gestation can also result in increased adiposity in 

older offspring (at 22 compared with 19 months). One of the main problems in trying to draw 

conclusions from these various studies is the variability in the timing of the nutritional insult and 

the age at which the offspring are studied. 

 

4.2.2. Energy balance 

 

Although there does appear to be some evidence of long-term programming of adiposity, the 

mechanisms for how this might occur are far from clear. Whether this apparent programming is 

via a direct effect on adipocytes and their development is not known. Unlike muscle fibres, there 

is no evidence to suggest that the numbers of adipocytes (or precursor cells) might be set at some 

stage of life. Indeed it would be counter-intuitive that this would occur, since the main function of 

WAT adipocytes is to store excess fatty acids from the blood, since high levels of circulating free 

fatty acids are toxic. The mechanism(s) for effects on body fat are therefore more likely to involve 

long-term changes in energy balance, involving changes in whole body energy expenditure (e.g. 

Basal Metabolic Rate, BMR) and/or appetite regulation. The effects of environmental insults on 

appetite regulation in the offspring are the focus of the next section. 

 

There are very few (if any) studies in this area that have directly measured energy expenditure, 

BMR or heat production. However there is one study (i.e. Daniel et al., 2007) showing increased 

adiposity of adult offspring in response to maternal undernutrition, with no significant changes in 

food intake, implying that a difference in energy expenditure might be involved. Interestingly, a 

very similar study (George et al., 2012) observed no effect of maternal undernutrition on whole 

body fat or peri-renal (PR) and Omental (OM) depot weights in 6 year old ewes, despite increased 

body weight, food intake and feed efficiency, suggesting that energy expenditure might be altered. 

Whether such changes in metabolism/energy expenditure relate to skeletal muscle (which 

accounts for a major proportion of BMR due to its mass), brown adipose tissue (a highly metabolic, 

heat generating tissue in rodents) and/or other tissues (e.g. the gut has a very rapid turnover), is 

not known. It is interesting to note, that a recent study comparing high and low feed efficiency or 

residual feed intake (RFI) in sheep (Sharifabadi et al., 2012) indicates reduced mitochondrial 

respiration in the muscles from the more efficient animals. This appears to involve reduced BMR 

and is associated with genes that encode for mitochondrial proteins, suggesting that oxidative 

metabolism and/or efficiency of ATP synthesis might be key. Once again, the important tissues 

would seem to be skeletal muscle and BAT, but more work is needed to investigate this further. 

 

4.2.3. Epigenetic programming of body fat 

As for the work on programming of skeletal muscle, there appear to be few studies to date that 

investigate the role of epigenetics in programming adiposity in sheep or cattle. A recent study of 

male rat offspring of overfed, obese mothers reports up-regulation of lipogenic pathways and 

adipogenic regulators in WAT, associated with changes in DNA methylation at key sites 

(Borengasser et al., 2013). It is also known that adipocyte differentiation is regulated by the 

transcription factors CEPB and PPARγ and that recruitment and activity of these molecules to 

chromatin requires epigenetic changes to histones and DNA methylation patterns (Cristancho and 

Lazar, 2011). This is strongly suggestive of altered adipocyte commitment and differentiation via 

epigenetic mechanisms and deserves further study in livestock species, particularly in mapping 
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how these changes occur during normal adipocyte formation and determining their functional 

significance in executing the adipocyte transcriptional programme. 

 

4.2.4 Interim conclusions 

 

As with muscle development, the central question is how adipose tissue development is affected 

by in utero influences. However, since adipogenesis is not as well understood as myogenesis, 

there is still a need to clarify the underlying biology to identify markers and cellular processes that 

can be used to study this system in vivo. We know that different depots grow at different stages 

of development, with some real contrasts observed between different species. For example, in 

sheep the PR depot grows fairly early, being present in young neonatal lambs, whereas the 

subcutaneous (SC) depot only really grows much later in adult sheep, but the opposite is observed 

in pigs (SC first, PR much later). Since the factors that regulate adipogenesis, lipogenesis and 

lipolysis appear to be the same in all adipose tissue depots, we still have no real understanding of 

how this differential in fat depot growth/ development is regulated or whether it might be altered 

by pre-natal environment/ nutrition. 

 

 

4.3. Evidence for programming of appetite regulation 

 

Food intake is fundamental to animal productivity. The central nervous system, in particular the 

hypothalamic region of the brain, plays a pivotal role in the control of voluntary food intake and 

appetite drive in mammals, whether ruminant or non-ruminant. The activity of these neural 

pathways is modulated by factors circulating in the bloodstream that provide information on the 

body’s nutritional status. Under normal conditions, adequate nutritional intake is thereby achieved 

for basal metabolic requirements, growth, reproduction and appropriate deposition of energy 

stores as fat. Since these neural and feedback pathways develop in early life, it is pertinent to 

examine the extent to which the adult phenotype may be altered or programmed by early life 

challenges. 

 

The mature hypothalamic arcuate nucleus produces both appetite stimulating (orexigenic) 

neuropeptides, primarily neuropeptide Y (NPY) and agouti-related peptide (AGRP), and appetite-

suppressing (anorexigenic) neuropeptides, primarily pro-opiomelanocortin (POMC) gene product 

and cocaine- and amphetamine-regulated transcript (CART). Output of these neuropeptides is 

able to respond appropriately to a range of peripheral nutrient and hormonal metabolic signals, 

most notably the adipose-derived hormone leptin, and neuronal projections from the arcuate 

nucleus to other hypothalamic regions such as the paraventricular nucleus (PVN) are important in 

mediating their effects (Schwartz et al., 2000). Central regulation of appetite has been largely 

studied in the context of human obesity (e.g. Dhillo, 2007) rather than livestock. 
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Table 4.2. Effects of fetal nutrition on adiposity in sheep   

Time of challenge 
 

Nutritional challenge Effect on growth 
Fetal/postnatal 
offspring age 

Effect on adiposity Reference 

A. In utero 

0-130d Maternal food restriction70% Fetal weight decreased 130 d Decreased perirenal fat and total carcass fat (Luther et al., 2007) 
Throughout Overnourished adolescent dam – 

placental insufficiency IUGR 
Fetal weight decreased 130 d Increased relative perirenal fat weight (Matsuzaki et al., 

2006, Redmer et al., 
2012) 

28 -80d Maternal food restriction 60% Fetal weight decreased 140 d Increased perirenal fat mass (Bispham et al., 2003) 

B. Post natal 

115 – 124d Maternal overnutrition 160% No effect 30 d Increased subcutaneous fat  (Muhlhausler et al., 
2006) 

Throughout Placental restriction by 
carunclectomy IUGR 

Low birth weight 45 d Increased visceral fat (De Blasio et al., 2007) 

Throughout Overnourished adolescent dam - 
placental insufficiency IUGR vs 
control-fed dams 

Low birth weight 77 d Increased total body fat (DXA)  (Wallace et al., 2011) 

Throughout Overnourished adolescent dam - 
placental insufficiency IUGR 

Low vs normal birth 
weight 

77 d No effect, but female>male (Wallace et al., 2013) 

Embryo donor  Overnutrition 170-190% for 5 
months 

No effect 120 d Females fatter, males no effect (Rattanatray et al., 
2010) 

Embryo donor Overnutrition for 4 months then 
food restriction 70% for 1 month 

No effect 120 d No effect (Rattanatray et al., 
2010) 

28 – 78d Maternal food restriction 50% No effect 120 d Increased backfat (males) (Ford et al., 2007) 
30 – 70d Maternal food restriction: 50% No effect 120 d No effect subcutaneous backfat depth, 

omental fat mass and perirenal fat mass; but 
females>males 

(Daniel et al., 2007) 

- - Range 150 d Positive correlation between total body fat 
(DXA) vs birth weight 

(Muhlhausler et al., 
2008) 

      
      



 
 

37 
 

      
Table 4.2. (Cont…) 

Time of challenge 
(gestation) 

Nutritional challenge Effect on growth 
Fetal/postnatal 
offspring age 

Effect on adiposity Reference 

30 – 70d Maternal food restriction: 50% No effect 180 d Increased intramuscular fat (LD and ST 
muscles), particularly in Males. No effect 
subcutaneous backfat depth, omental fat 
mass and perirenal fat mass; but 
females>males. 

(Daniel et al., 2007) 

Throughout Overnourished adolescent dam - 
placental insufficiency IUGR vs 
control-fed dams 

Low birth weight 240 d No effect, but female>male (DXA)  (Wallace et al., 2011) 

28 – 78d Maternal food restriction 50% No effect 270 d Increased kidney-pelvic fat  (males) (Ford et al., 2007) 
0 – 30d Maternal food restriction 50% No effect 12 months No effect (Gardner et al., 2005) 
110d - term Maternal food restriction 50% No effect 12 months Increased perirenal and omental fat mass (Gardner et al., 2005) 
Throughout Maternal overnutrition 150% - 

obese dam 
No effect 19 months 

 
No effect (DXA) 
 

Long et al 2010 

Throughout Maternal overnutrition 150% - 
obese dam 

No effect 22 months Increased total body fat (DXA) (Long et al., 2010) 

- Twins vs singles Low birth weight 2 years Increased total body fat (DXA) (Hancock et al., 2012) 
Throughout Twinning and placental 

embolization 
Low birth weight 2.3 years Increased abdominal fat mass (Louey et al., 2005) 

Periconception,   -
61– 0d, -61 – 30d 
or  2 – 30d  

Maternal food restriction: ~50% No effect 3 – 4 years Increased total body fat (DXA) and increased 
perirenal fat mass – in males; no effect in 
females. 

(Jaquiery et al., 2012) 

28-78d Maternal food restriction: 50% No effect 6 years No effect (DXA and perirenal and omental 
fat mass), but plasma leptin increased 

(George et al., 2012) 
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4.3.1. Hypothalamus 

 

In cattle and sheep, these neural pathways develop early in fetal life, with the hypothalamus being 

morphologically distinct by the end of the first third of gestation. Gene expression for the primary 

appetite-regulating hypothalamic neuropeptides is seen in the fetal sheep arcuate nucleus from 

early (50d, Adam et al unpublished) to mid-gestation (81d, Adam et al., 2008) onwards (110d - 

130d, (Muhlhausler et al., 2004); term = 145d), and evidence is emerging that expression levels 

may be affected by alterations in the prenatal nutritional environment. The postnatal persistence 

of such changes in gene expression may contribute to the programming of an altered adult 

appetitive phenotype, and this hypothesis forms the basis for many investigations into the fetal 

origins of human obesity (Muhlhausler and Ong, 2011). However the majority of such 

investigations use laboratory rodents in which the hypothalamus is relatively immature at birth and 

the extrapolation of findings to larger mammals needs to recognise the temporal differences in 

development between altricial (rodent) and precocious (livestock) species. This overview will 

therefore focus on findings from sheep. 

 

The fetus relies passively on transplacental transfer of nutrients (primarily glucose) from the 

maternal circulation for its nutrition, and fetal nutritional status can affect the developing 

hypothalamic appetite-regulating circuitry (Table 4.3). Hypothalamic NPY (orexigenic) is 

increased in late gestation sheep fetuses of undernourished mothers (Warnes et al., 1998) and 

anorexigenic CART gene expression is decreased in late gestation intra-uterine growth restricted 

(IUGR) sheep fetuses in overnourished adolescent mothers (Adam et al., 2011b). Conversely, late 

gestation intra-fetal glucose infusion increased anorexigenic POMC gene expression 

(Muhlhausler et al., 2005). In mid-gestation, POMC gene expression correlated positively with fetal 

glycemia (Adam et al., 2008) but maternal overnutrition/obesity had no effect on hypothalamic 

levels of orexigenic or anorexigenic neuropetides in ovine foetuses (Breton et al., 2011).  

 

The foregoing suggests that relative expression levels of appetite-regulatory hypothalamic 

neuropeptides are sensitive in sheep to prenatal nutrition, but the key question is whether these 

changes persist to affect their appetite-regulatory actions postnatally (Table 4.3). Maternal 

overnutrition in late gestation resulted in increased POMC gene expression in the arcuate nucleus 

of lambs at postnatal day 30 (Muhlhausler et al., 2006), whereas maternal food restriction in early 

gestation decreased hypothalamic NPY expression at postnatal day 7 (Sebert et al., 2009). 

However, no effects on hypothalamic gene expression levels were seen in obese 1 year-old 

offspring following early gestation maternal food restriction (Sebert et al., 2009) or in 11 week-old 

low birth weight lambs following IUGR (Adam et al., 2013). Importantly, however, this latter study 

highlighted a major effect of gender, with orexigenic genes predominating in males and 

anorexigenic genes predominating in females, linked closely to the sex differences in body 

composition (adiposity) and consequent metabolic hormone status (leptinaemia) (Adam et al., 

2013; Wallace et al., 2013).  

 

Metabolic hormones that regulate the hypothalamic appetite circuits in adults also control their 

development (Bouret, 2013). Notably leptin determines patterns of neurogenesis, axon growth and 

synaptic plasticity in the developing hypothalamus, especially during a discrete developmental 

period soon after birth in rodents (Bouret and Simerly, 2007). It is not known exactly when this 

developmental period occurs in more precocious larger mammals like sheep and cattle, but it is 

likely to be prenatal given the greater maturity of the hypothalamus at birth (Grayson et al., 2010). 

Leptin secretion is initiated in the later stages of gestation in sheep and cattle following significant 

adipose tissue deposition and therefore fetal nutrition and growth will be critical in this regard. Late 
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gestation sheep fetuses with increased adiposity had both increased leptinaemia and increased 

hypothalamic expression of the leptin receptor (Adam et al., 2011a), and indeed the adipose-

hypothalamic axis is thought to be critical to the developmental programming of hypothalamic 

feeding circuits (Horvath and Bruning, 2006; Breton, 2013). Thus, leptin plays an important 

neurotrophic role in early life and elevated circulating leptin in lambs soon after birth does not 

appear to be anorexigenic (De Blasio et al., 2010) However, by 5-6 months of age adult-like 

anorexigenic actions of leptin are seen in sheep given leptin administered into the hypothalamus, 

irrespective of birth weight or gender (Adam et al., 2011b) 

 

4.3.2. Epigenetic programming of appetite regulation 

 

There are very limited published data on epigenetic changes in central appetite-regulating 

pathways in sheep or cattle. Periconceptional undernutrition led to hypomethylation of the POMC 

promoter, though no change in POMC or NPY gene expression, in the late gestation fetal sheep 

hypothalamus (Stevens et al., 2010); this was further exacerbated by twinning and the consequent 

additional nutritional challenge of placental restriction (Begum et al., 2012). Since the rodent 

hypothalamic POMC promoter region is a key target of epigenetic changes following perinatal 

nutritional manipulations (Coupe et al., 2010), this clearly warrants further investigation in livestock 

species. 

 

 

4.3.3. Food intake and appetite 

 

Studies of appetite (voluntary food intake) in offspring from nutritionally perturbed ovine 

pregnancies have produced variable results depending on the age at study, postnatal 

management and nature of the perturbation (Table 4.3). Following late gestation maternal 

overnutrition, lambs had increased appetite for the first 3 weeks but not at 4 weeks of age 

(Muhlhausler et al., 2006); whereas IUGR lambs from pregnancies characterised by placental 

insufficiency (carunclectomy) also had increased feeding activity at 2 weeks of age (De Blasio et 

al., 2007). Lamb birth weight was unaltered in the foregoing studies, whereas there was no effect 

on suckling activity in 3 week old IUGR lambs with low birth weight from overnourished adolescent 

placentally-insufficient pregnancies (Adam et al., 2013). Others have reported no effect of low birth 

weight on food intake in the first five weeks of life (Vilette and Theriez, 1981; Villette and Theriez, 

1983). However, low birth weight lambs consume more food to achieve a given live weight 

because it takes them longer to achieve it; thus low birth weight lambs consumed 13% or 20% 

more than normal birth weight lambs when artificially reared rapidly or slowly, respectively, to 20 

kg (Greenwood et al., 1998). Nonetheless, Vilette and Theriez (1981) reported that food intake 

from weaning to 35kg was not related to birth weight, Sibbald and Davidson (1998) found that food 

intake from weaning to 2 years of age was not affected by moderate maternal nutrient restriction 

in late gestation and consequent low birth weight, and Daniel et al. (2007) describe no effect on 

food intake by lambs up to 17 and 24 weeks of age after severe maternal food restriction in early 

gestation. In longer term studies, following early gestation maternal food restriction, (Sebert et al., 

2009) report no effect on appetite in obese 1 year-old offspring but (George et al., 2012) report 

increased appetite drive in obese female 6 year-old offspring. On the other hand, (Long et al., 

2010) report increased appetite at 19 months of age in the offspring of overnourished obese 

mothers. 
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Table 4.3. Effects of altered fetal nutrition on appetite regulation in sheep 

Time of challenge  Nutritional challenge Fetal/offspring 
age 

Hypothalamic neuropeptide 
changes 

Appetite/Food 
intake 

Reference 

A. In utero 

Throughout Maternal overnutrition: 150%  75 d No effect CART, POMC, NPY, AGRP - (Breton et al., 2011) 
Throughout Overnourished adolescent dam -

placental insufficiency IUGR 
130 d Decreased CART 

No effect POMC, NPY, AGRP 
- (Adam et al., 2011b) 

130 – 140d Fetal glucose infusion 140 d Increased POMC  
No effect CART, NPY, AGRP 

- (Muhlhausler et al., 2005) 

115-145d Maternal food restriction: 50%  145 d Increased NPY  - (Warnes et al., 1998) 

B. Post natal 

30 – 80d Maternal food restriction: 50% 7 d Decreased NPY 
No effect POMC, AGRP 

- (Sebert et al., 2009) 

Throughout Low birth weight, increase fetal no. 7 d - No effect (Villette and Theriez, 1983) 
Throughout Placental restriction by 

carunclectomy IUGR 
15 d - Increased (De Blasio et al., 2007) 

Throughout Overnourished adolescent dam - 
placental insufficiency IUGR 

21 d - No effect (Adam et al., 2013) 

115 – 124d Maternal overnutrition 160% 30 d Increased POMC Increased 1-3wks 
No effect at 4wks 

(Muhlhausler et al., 2006) 

Throughout Low birth weight, increase fetal No. 35 d - No effect (Vilette and Theriez, 1981) 
Throughout Low birth weight - Overnourished 

adolescent dam - placental 
insufficiency IUGR 

77 d No effect CART, POMC, NPY, AGRP - (Adam et al., 2013) 

30 – 70d Maternal food restriction: 50% 17 wks - No effect (Daniel et al., 2007) 
30 – 70d Maternal food restriction: 50% 24 wks - No effect (Daniel et al., 2007) 
30 – 80d Maternal food restriction: 50% 12 months No effect POMC, NPY, AGRP No effect (Sebert et al., 2009) 
-60d - term Maternal obesity: 150% 19 months - Increased  (Long et al., 2010) 
105d - term Maternal food restriction: 75% 2 years - No effect (Sibbald and Davidson, 1998) 
28-78d Maternal food restriction: 50% 6 years - Increased  (George et al., 2012) 

CART, cocaine- and amphetamine-regulated transcript; POMC, pro-opiomelanocortin; NPY, neuropeptide Y; AGRP, agouti-related peptide
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Data from cattle report no differences in food intake (at 26-30 months of age) attributable to wide 

differences in prenatal growth and birth weight (Greenwood and Cafe, 2007). Low birth weight 

cattle at a given age eat less than normal birth weight counterparts but not when intakes are 

adjusted for current body weight, and likewise twin cattle tend to eat less food than singletons at 

a given age by virtue of their smaller size (de Rose and Wilton, 1991). 

 

4.3.4. Interim conclusions 

 

Nutritional challenges in utero alter the developing hypothalamic appetite-regulatory circuits in 

fetal cattle and sheep, but there is a lack of evidence for the persistence and functional significance 

of such alterations for food intake in current animal production systems. However, emerging data 

on sensitivity to epigenetic changes by the promoter of the anorexigenic POMC gene could be of 

lasting significance for appetite drive and deserves further study in livestock species. 

 

5. Programming of fertility 

Successful reproduction and fertility are central to the financial success of most livestock 

enterprises and have their origins firmly in fetal life. Crucially, in female sheep and cattle, the 

resting reserve of primordial follicles that will determine their lifetime supply of potentially 

fertilizable oocytes (eggs) is established definitively before birth and cannot be replenished 

thereafter (Erickson, 1966a and 1966b; McNatty et al., 1995). In contrast, males continuously 

produce new spermatozoa after puberty, but the number of Sertoli cells which are the primary 

determinant of sperm production and testes size in adult life is determined by proliferation during 

the fetal, neonatal and peripubertal periods (Sharpe et al., 2003). Thus in both sexes, the 

developing reproductive axis and its hormonal control systems are potentially susceptible to the 

range of environmental programming stimuli detailed in the preceding sections of this review.       

 

5.1. Impact of early life nutrition 

5.1.1. Female offspring: sheep 

The impact of early life nutrition on the developing reproductive axis and on adult fertility in sheep 

is summarized in Table 5.1. In sheep (gestation length ~145 days) the overwhelming body of 

evidence relates to maternal undernutrition in adult ewes, typically 0.5 to 0.7 x maintenance 

compared with a control group nourished to meet the needs for fetal growth. Exposures during 

pregnancy are either limited to the known key periods of gonadal development, or span the entire 

prenatal period. Where endpoints were assessed in fetal life, the consensus seems to be one of 

delayed germ cell degeneration or delayed ovarian follicular development as measured by 

elaboration of the granulosa cell layer (Borwick et al., 1997, Rae et al., 2001). Altered proliferation 

and apoptosis within the developing ovary may be the root cause (Lea et al., 2006; Grazul-Bilska 

et al., 2009). In all cases the effects of maternal undernutrition were independent of the growth 

rate of the fetus per se. In contrast, compelling reductions in primordial follicle number (80% less) 

were evident in fetuses destined to be growth restricted at birth (Da Silva et al., 2002 and 2003). 

Although in this instance the adolescent dams were overnourished (~2 x maintenance), in this 

well-established paradigm competition for nutrients between the growing mother and her 

conceptus results in restricted placental development, and a major reduction in uteroplacental 

blood flow and fetal nutrient supply from mid-gestation onwards (Wallace et al., 2011). 
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Accordingly, by late gestation, the size of the fetal ovarian follicle population was positively 

correlated with both placental and fetal weight.   

None of these aforementioned prenatal nutritional manipulations appear to influence the onset of 

puberty in spring-born females, at least when fed ad libitum after birth to ensure they exceed the 

critical weight required to respond to the appropriate photoperiodic cues at the start of their first 

breeding season (Da Silva et al., 2001; Kotsampasi et al., 2009b). Similarly, there is little evidence 

of a robust effect of prenatal nutrition on the postnatal function of the hypothalamic –pituitary axis 

in that baseline and GnRH- stimulated gonadotrophin secretion are largely unperturbed at puberty 

and later in adult life (Borwick et al., 2003; Kotsampasi et al., 2009b). This suggests that the 

prenatal nutritional programming of lifetime fertility in females primarily has its origins within the 

ovary and / or uterus. At its simplest this could be manifest as (a) a reduction in ovulation rate 

directly reflecting a diminished ovarian follicle reserve, (b) a reduction in embryo survival variously 

reflecting poor oocyte quality, fertilization failure, inability to progress beyond the maternal 

recognition of pregnancy stage and / or (c) a reduction in litter size due to a failure to implant or 

limited uterine capacity. There is some supporting evidence to substantiate these various 

possibilities but more than one factor is likely to be involved. Maternal undernutrition from 

conception to 95 days of gestation was associated with a modest (20%) reduction in the natural 

ovulation rate of female offspring expressed at a single time point within their second breeding 

season (Rae et al., 2002a). While ovulation rate clearly sets the upper limit of eggs shed by the 

ovary in any one cycle it is unknown whether this effect on ovulation rate was sustained throughout 

the life course or indeed translated into a reduction in litter size. In contrast when maternal 

undernutrition was limited to the first 35 days of gestation, there was no effect on the naturally 

occurring ovulation rate of the female offspring measured on seven occasions during the first two 

breeding seasons or following mild ovarian stimulation with pregnant mare’s serum gonadotrophin 

on one occasion during the second (Parr et al., 1986). Similarly ovulation rate of female offspring 

at the end of a three year breeding life (corrected for current pre-mating adiposity) was not 

influenced by maternal nutrient supplementation throughout the second two thirds of pregnancy 

(Gunn et al., 1995). Effects on ovulation rate may not limit litter size until relatively late in a female’s 

reproductive life when her ovarian reserve may become exhausted. Furthermore, theoretically the 

ovarian follicle population may become limiting earlier in life in pedigree females repeatedly 

superovulated as part of genetic improvement programmes involving multiple ovulation and 

embryo transfer, but this has not been tested experimentally.  

On sheep farms, fertility is most often recorded in terms of pregnancy rate and litter size. Again 

the available evidence is apparently contradictory. When assessed on a single occasion following 

a synchronised mating in the first breeding season, pregnancy rate and litter size of female 

offspring were not influenced by diverse nutritional exposures (under versus overnutrition) during 

early or mid-pregnancy (Munoz et al., 2009). In contrast, a major reduction in pregnancy rate 

following hand mating and a 45-day breeding period were reported in a small study of two year 

old females who had been exposed to maternal undernutrition between 28 and 78 days gestation 

(Long et al., 2010). A more robust assessment of the impact of early life nutrition on fertility is 

provided when female offspring are studied over several breeding seasons and in large numbers. 

Accordingly, Gunn et al. (1995) studied the effect of supplementing maternal nutrition during the 

last 100 days of pregnancy or during the first 100 days of lactation on female offspring fertility over 

three lambing seasons. Relative to the unsupplemented control group, both periods of 

supplementation were associated with a higher lifetime incidence of multiple births, with lactation 

> pregnancy due to a reduced incidence of barrenness and ewe mortality. Similarly, there were 

fewer lambs born to female offspring over a period spanning up to eight pregnancies, when 

stocking density was high (low available nutrition) from conception to weaning but only when 
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stocking density was also high in adult life (Langlands et al., 1984). This interaction suggests that 

negative effects of prenatal undernutrition may not be revealed unless nutrient availability at the 

time of breeding is also marginal. Within genotypes, birth weight is a useful indicator of in utero 

fetal nutrient supply that can be readily measured on farm. Intriguingly, data from performance 

recorded Suffolk flocks reveals that females born at both birth weight extremes (i.e. 2 standard 

deviations above or below the mean birth weight) had a lower number of lambs per litter during a 

median of three pregnancies (Gardner et al., 2009). This effect was independent of offspring post-

natal growth rate from birth to 8 weeks age but growth rates in these pedigree females were 

relatively high across the board reflecting the intensive nutritional inputs common in such flocks. 

In contrast, a lower lifetime incidence of multiple births has been reported for female offspring who 

along with their mothers were exposed to poor pasture from birth to weaning to restrict offspring 

growth (Rhind and McNeilly, 1998). These lifetime fertility studies were low intensity and generally 

not designed to investigate mechanisms but reductions in litter size are likely in part to involve 

increased embryo or fetal mortality. In the absence of experimental assessments of litter size in 

relation to ovulation and fertilisation rates, embryo quality and pregnancy rates within a single 

study it is perhaps pertinent that maternal undernutrition during mid-pregnancy increased markers 

of DNA damage in fetal oogonia (Murdoch et al., 2003) and that blastocyst production in vitro from 

pre-pubertal ewe lambs was highest when they had been exposed to high rather than low maternal 

nutrition during mid-late pregnancy (Kelly et al., 2005). Conceptus survival is also dependent on 

appropriate uterine development and capacity (Vallet et al., 2013). While under normal 

circumstances it is generally assumed that the capacity of the uterus and placentae of ruminants 

to provide support for fetuses exceeds the number of fetuses present, it is intriguing to note a 

modest but significant reduction in uterine caruncle number, and hence potential placentomes, in 

low birth weight female lambs (Aitken et al., 2003). However the possible impact on litter size 

remains untested. 

 

5.1.2. Female offspring: cattle 

The effect of early life nutrition on aspects of reproductive performance in beef and dairy cattle are 

summarized in Table 5.2. In cattle (gestation length ~285 days), there is a scarcity of data relating 

prenatal nutritional exposure to altered fetal ovarian development. Nevertheless, it is now well 

established that the number of antral follicles present at all stages after birth is a direct reflection 

of the ovarian follicle reserve established during fetal life (Evans et al., 2012). Thus birth weight 

(as a proxy for fetal nutrient supply), was positively associated with the antral follicle count (AFC) 

in a large population of neonatal beef calves who died due to dystocia, and in adult heifers of 

various ages examined by ultrasound (Cushman et al., 2009). Reduced ovarian weight and large 

follicle diameter at 30 months of age has been measured following slow prenatal growth rates 

(Wilkins et al., 2006), while a general reduction in all follicle types was evident following exposure 

to a low then high protein diet during the first two thirds of gestation (Sullivan et al., 2009). A direct 

effect of maternal undernutrition during the first third of gestation on the ovarian follicle reserve 

has recently been documented using serial ovarian ultrasound on five occasions during pre-

pubertal and adult life (Mossa et al., 2013). The robust decrease in follicle number reported 

appears to be associated with increased maternal testosterone during dietary restriction and was 

independent of calf birth weight and postnatal growth rate. Furthermore, recent in vitro data 

suggests that fetal ovarian steroids are potent negative regulators of follicle formation and as such 

environmental factors that alter steroid production in the dams and/or fetus may influence the size 

of the ovarian follicle reserve at birth (Fortune et al., 2013).  
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Similar to sheep, prenatal maternal nutrition did not impact the onset of puberty in beef cattle 

(Martin et al., 2007; Mossa et al., 2013) but higher offspring pregnancy rates were observed 

following protein supplementation in late pregnancy (Martin et al., 2007), and when the AFC pre-

breeding was high (Cushman et al., 2009). In contrast, manipulation of the post-weaning diet in 

beef heifers did not impact AFC or overall pregnancy rate (Eborn et al., 2013)  In cattle there is a 

surprising lack of data linking prenatal nutrition and offspring reproductive performance. Although 

dairy cows with a high AFC are three times more likely to become pregnant by the end of the 

breeding period (Mossa et al., 2012), there are no data directly linking birth weight with the AFC 

in dairy breeds. Moreover, size at birth did not impact fertility in the first lactation and low birth 

weight was in part protective against abnormal ovarian cycles in the second service period (Swali 

and Wathes, 2006). In contrast, growth data obtained from 17 UK dairy farms suggests that low 

postnatal growth rates increase age at first breeding and age at calving (Brickell et al., 2009). 

 

5.1.3. Male offspring: sheep and cattle 

Relative to the female, there is a dearth of published information on the impact of early life nutrition 

on male offspring fertility in ruminants (Tables 5.1 and 5.2). The single bovine study shows FSH 

levels and testis volume were increased in the bull calf by first trimester protein restriction (Sullivan 

et al., 2010). In sheep when endpoints were assessed in mid-pregnancy the consensus is that 

neither maternal undernutrition nor reduced fetal nutrient supply impact Sertoli cell number, 

number of seminiferous cords or basal pituitary gonadotrophin secretion (Rae et al., 2002b; Da 

Silva et al., 2003; Andrade et al., 2013). However in the newborn lamb, the number of seminiferous 

cords and Sertoli cells were reduced following maternal undernutrition from mid-pregnancy 

onwards and was associated with a modest reduction in birth weight (12% reduction) relative to 

the adequately nourished control group (Bielli et al., 2002). In addition, male lambs that were 

severely growth restricted in utero (47% reduction) as a result of overnourishing their adolescent 

dams exhibited slower absolute postnatal growth rates, delayed age at puberty, lower testosterone 

concentrations and reduced testicular volume per unit live weight between 28 and 35 weeks of 

age (Da Silva et al., 2001). As Sertoli cells set the ceiling for sperm production, and continue to 

proliferate until puberty, it is likely that poor prenatal growth followed by a delayed attainment of 

the pubertal live weight threshold could well impact ram libido and sperm production and quality, 

particularly if rams are used in their first breeding season. However, this has not been directly 

tested. By contrast in studies where maternal nutrition is restricted during the first two thirds of 

gestation and lamb birth weight and postnatal growth are unaffected, there is no evidence of a 

long term effect on the onset of puberty (Kotsampasi et al., 2009b) or on indices of semen quality 

in adult life (Rae et al., 2002a). 

 

5.2. Impact of environmental chemicals 

Environmental chemicals, including the so called ‘endocrine disrupting compounds’ (EDCs) can 

potentially programme various components of the reproductive axis (brain- pituitary-gonad-uterus) 

to malfunction in later life, altering important aspects of fertility and causing financial loss to sheep 

and cattle producers (Rhind et al., 2003; Rhind, 2005). These chemicals come from a variety of 

sources including industrial processes, domestic effluents, and agricultural practices.  Much of the 

current data relating to the reproductive actions of EDCs is derived from epidemiological studies 

of wildlife species and from rodent studies involving supra-environmental exposures. There is a 

comparative lack of information in farm animal species and most of our current knowledge comes 
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from sheep studies involving relatively small numbers of subjects. Detailing the effect of these 

EDCs is further complicated because they do not necessarily comprise one chemical substance 

but mixtures, in which each individual component may carry a low level of risk but may cause 

significant physiological disruption when combined in mixtures found in the real-life environment 

(Bellingham et al., 2009). These mixtures include sewage sludge, a by-product of the treatment of 

waste water from domestic, industrial and agricultural sources which is commonly disposed of by 

spreading it on pastures that may in turn be grazed by domestic ruminants (Rhind et al., 2011). 

As such sewage sludge is arguably one of the most relevant EDCs in the context of this review. 

The fetal and neonatal stages are particularly sensitive to EDCs and exposure during these critical 

windows of development can impact the reproductive axis in a sexually differentiated manner as 

will be discussed in the following sections. This review will concentrate on five important EDCs; 

Bisphenol-A (BPA), Octylphenol (OP), Methyoxychlor (MXC), Polychlorinated biphenyls (PCB) 

and sewage sludge (SS). Main effects are summarized in Table 5.3.  

5.2.1. Effects of EDCs in the hypothalamus 

Reproduction in animals is ultimately controlled by approximately 2000 neurones in the 

hypothalamic-preoptic area of the brain that synthesise and secrete gonadotrophin releasing 

hormone (GnRH: (Dees and McArthur, 1981; Lehman et al., 1986).  These neurones are, in turn, 

regulated by neurotransmitter and neuropeptide systems that convey information about the 

animals’ internal and external environment including its steroidal status (Figure 5.1). GnRH 

neurones themselves do not possess nuclear hormone receptors (Herbison et al., 1993) and 

therefore information must be relayed by steroid-receptive neural systems including Kisspeptin 

and Galanin. Further, it is known that many of the EDCs act as steroid mimetics exerting their 

actions via classical steroid receptors in reproductive tissue. EDCs can reduce the population of 

both GnRH neurones and GnRH receptors (Bellingham et al., 2010) (SS); (Mahoney and 

Padmanabhan, 2010) (BPA and MXC)). Whether these reductions in GnRH synthetic capacity 

impact on reproduction in the females used in these studies is unclear as relatively small amounts 

of GnRH are needed to trigger ovulation (Bowen et al., 1998). However, a lack of receptors for 

GnRH may alter signalling pathways and reduce pituitary LH and FSH secretion with downstream 

effects on fertility. EDCs also alter oestrogen receptor alpha and beta expression in the female 

sheep hypothalamus (ESR1, ESR2: (Mahoney and Padmanabhan, 2010)). Specifically, female 

fetuses exposed to BPA have increased ESR1 gene expression in adulthood while ESR2 gene 

expression is reduced by exposure to both BPA and MXC. Changes in steroid receptor abundance 

may alter the feedback mechanisms responsible for ovulation potentially altering mating behaviour 

and fertility (Mahoney and Padmanabhan, 2010), but this hypothesis has not been directly tested. 

In addition, specific oestrogen receptive neural populations that regulate GnRH secretion have 

also been shown to be altered by EDCs, namely Kisspeptin, its receptor and Galanin receptors 1-

3 (Bellingham et al., 2009; Bellingham et al., 2010) (SS)). Reductions in these neural populations 

were observed in 110 day old male and female fetuses, although whether these neural networks 

remain perturbed after birth and into adulthood is currently unexplored. After birth, both Kisspeptin 

and Galanin are important for the timing of puberty, ovulation and receptivity in farm animals 

(Caraty et al., 2012) and, therefore, reductions in these neurotransmitter systems may potentially 

reduce reproductive performance in sheep.  
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Table 5.1. Summary of impact of early life nutrition on fetal gonadal development, hypothalamic – pituitary - gonadal function and adult fertility in sheep 
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Nutritional 
exposure 

Period of 
exposure 

Litter size  Effect on fetal 
/ birth wt. 

Life-stage 10 
endpoints 
measured 

Main effect(s) reportedc Study size and 
gender 

Reference 

Maternal UNa 0 to 62d GAb Singletons, 
twins 

None Fetal d62 Delayed ovarian follicular 
development 

11 females (Borwick et 
al., 1997) 

Maternal UNa 0 to 30, 31 to 
50, 31 to 65, 
65 to 110d GAb 

Singletons, 
twins 

None Fetal d50, 
65 or 110 

Delayed ovarian follicular 
development & stage 
specific effects on 
markers of apoptosis  

130 females (Rae et al., 
2001, Lea et 
al., 2006) 

Maternal UNa 0 to 30, 31 to 
50, 31 to 65, 
65 to 110d GAb 

Singletons, 
twins 

None d50 or 
65, 15%↓at 
d110 

Fetal d50, 
65 or 110 

No effect on testes mass, 
transient (d50) effect on 
steroidogenic capacity. 
No effect on Sertoli cell 
number or markers of 
apoptosis (d110) 

113 males (Rae et al., 
2002b, 
Andrade et 
al., 2013) 

Maternal UNa 28 to 78d GAb Singletons, 
twins 

None Fetal d78 Increased oxidative DNA 
damage in oogonia 

12 females (Murdoch et 
al., 2003) 

Maternal ONd 
/reduced fetal 
nutrient supply 

4 to 103d GAb Singletonse None Fetal d103 Reduced primordial & 
total follicle number;  
No effect on seminiferous 
cord or Sertoli cell no. 

11 females 
 
17 males 

(Da Silva et 
al., 2002) 

Maternal ONd 
/reduced fetal 
nutrient supply 

4 to 131d GAb Singletonse 31% ↓ Fetal d131 Reduced primordial & 
total follicle number. 
Higher pituitary LHβ 
mRNA 

19 females (Da Silva et 
al., 2003) 

Maternal UNa± 
high selenium 

50 to 135d GAb Singletons None Fetal d135 Variable effects of UN 
and selenium on 
proliferation in ovarian 
follicles and blood vessels   

32 females (Grazul-Bilska 
et al., 2009) 

Maternal UNa 70d GAb to 
term  

Singletons 12% ↓ Neonatal d2 Reduced Sertoli cell 
number 

25 males (Bielli et al., 
2002) 
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Maternal 
UN/ONf 

-82 to 70, 71 to 
100, 100 to 
126d GAb 

Singletons, 
twins 

None Pre-pubertal 
(2 months) 

Blastocyst production in 
vitro highest in females 
exposed to ON mid-late 
pregnancy    

36 females (Kelly et al., 
2005) 

Maternal ONd 
/reduced fetal 
nutrient supply 

4d GAb to term Singletonse 31% ↓ 
female 
47% ↓ male 

Pre-adult 
(10 months) 

No effect on age at 
puberty,  normality or 
number of ovarian cycles;  
Delayed onset of puberty, 
lower testosterone, 
reduced testes volume 

28 females 
 
 
14 males 

(Da Silva et 
al., 2001) 

Maternal UNa 0 to 30 (UN1), 
31 to 100d GAb 
(UN2)  

Twins 
(artificially 
reared) 

None Pre-adult 
(10 months) 

No effect on onset of 
puberty. Higher FSH post 
GnRH challenge & lower 
Sertoli cell number- UN2 

19 males (Kotsampasi 
et al., 2009a) 

Maternal UNa 0 to 30 (UN1), 
31 to 100d GAb 
(UN2) 

Twins 
(artificially 
reared) 

None Pre-adult 
(10 months) 

No effect on onset of 
puberty or LH surge 
parameters.  Higher FSH 
post GnRH challenge-UN1 

17 females (Kotsampasi 
et al., 2009b) 

Maternal UNa 0 to 95d GAb Singletons, 
multiples 

None Adult (20 
months) 

Reduction in ovulation 
rate 
No effect on testes size or 
semen quality 

49 females 
 
32 males 

(Rae et al., 
2002a) 

Maternal UN or 
ON 

1 to 39d, 40-
90d GAb 

Singletons, 
multiples 

Not reported Adult 
(mated at 8 
months) 

No effect on conception 
rate, litter size or number 
of lambs weaned 

60 females (Munoz et al., 
2009) 

Maternal UNa 100d GAb to 14 
weeks 
postnatal age 

Twins 18% ↓ Pre-pubertal 
(7months), 
Adult 
(18months) 

No effect on 
hypothalamic -pituitary 
function at either stage 

2 cohorts of 
28 females 
each 
 

(Borwick et 
al., 2003) 

Maternal UNa 28 to 78d GAb Singletons Not reported Adult (12 & 
24 months) 

Lower progesterone in 
one cycle - both years. 
Reduced pregnancy rate 
in year 2  

14 females (Long et al., 
2010) 
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 aUN, 

undernutrition (typically 0.5-0.7 x maintenance in adult ewes); bGA, gestational age; cwhere effects reported, minimum P<0.05 relative to  

optimally nourished reference control group; dON, overnutrition (typically 2 x maintenance in adolescent ewes); esingleton pregnancies derived  

by embryo transfer using a single sire; fUN/ON, undernutrition 0.7x maintenance and overnutrition 1.5 x maintenance in adult ewes, 2x2x2 factorial   

design; gPMSG, pregnant mares serum gonadotrophin; hbirth weight as a proxy for variable fetal nutrient supply, lambs categorised as relatively  

small or  large at birth if 2 standard deviations below or above the mean birth weight, respectively; iHigh versus low stocking density during three  

periods, 2x2x2 factorial design.    

 

 

 

 

Maternal UNa 0 to 35d GAb Singletons None Adult (18 & 
30 months) 

No effect on natural 
ovulation rate (7 
measures) or after PMSGg 

~170 females (Parr et al., 
1986) 

Maternal 
supplementation  

50d GAb to 
term, term to 
100 days 
postnatal 

Singletons, 
multiples 

Pregnancy 
supplemented 
↑14% 
 

Adult (3 
pregnancies) 

No effect on ovulation 
rate. Higher lifetime 
incidence of multiple 
births in supplemented 
groups (lactation > 
pregnancy) 

450 females (Gunn et al., 
1995) 

Variable fetal 
nutrient supplyh 

Pregnancy Singletons  Not applicable 
– as per study 
design 

Adult 
(median of 3 
pregnancies) 

Reduced average number 
of lambs per litter in 
females born at both 
birth weight extremes 

2427 females (Gardner et 
al., 2009) 

High stocking 
density/ low 
available 
nutritioni 

0d GAb to 
3months, 3 to 
15months, 
>15months 
postnatal age 

Singletons, 
twins 

None Adult (up to 
9 years & 8 
pregnancies) 

Fewer lambs born if 
stocking density high 
from conception to 
weaning but only if also 
high in adult life  

283 females (Langlands et 
al., 1984) 

Undernutrition 2 to 15 weeks 
postnatal age 

Singletons Not reported Adult (up to 
7 years, 4-6 
pregnancies) 

Lower lifetime incidence 
of multiple births 

499 females (Rhind and 
McNeilly, 
1998) 
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Table 5.2. Summary of impact of early life nutrition on reproductive function in cattle 
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Nutritional 
exposure 

Period of 
exposure 

Type  Effect on 
fetal / birth 
wt. 

Life-stage 1o 
endpoints 
measured 

Main effect(s) reportedc Study size and 
gender  

Reference 

Variable fetal 
nutrient supplya 

Pregnancy Beef cattle Not 
applicable – 
as per study 
design 

Neonatal 
 
Adult (12-14 
months) 

Birth weight positively 
associated with AFC 
(neonatal and adult life). 
Decreased pregnancy 
rate when AFC is low.  

181 females 
 
406 females 

(Cushman et 
al., 2009) 

Maternal UN 
(0.6 x 
maintenance) 

-11 to 110d GA Beef cattle None Pre-pubertal 
(7, 18, 35 
weeks) and 
adult (56, 86 
weeks) 

No effect on age at 
puberty. Diminished 
ovarian reserve; lower 
AFC at 7, 18, 56, 86 
weeks, lower AMH and 
higher FSH 

23 females (Mossa et al., 
2013) 

Maternal low/ 
high protein 
 (2 x 2 factorial) 

0 to 93, 93-
180d GA 

Beef cattle Not 
reported 

Pre-pubertal  
and adult (5, 
23 months) 

Reduced primordial, 
primary and AFC after 
low-high protein in first 
two thirds of gestation  

36 females (Sullivan et 
al., 2009) 

Maternal protein 
supplementation / 
improved pasture 
(2 x 2 factorial) 

Late gestation, 
early lactation 

Beef cattle None Adult (up to 
start of 
second 
breeding 
season) 

No effect on age at 
puberty. Earlier first 
calving and higher  
pregnancy rates following 
supplementation 
(protein) in late gestation  

170 females (Martin et al., 
2007) 

Slow or rapid 
growth by varying 
maternal nutrition 
 

30-90dGA to 
term, birth to 
weaning 

Beef cattle 24% ↓ Adult (30 
months) 

Reduced ovarian weight 
and large follicle 
diameter after prenatal 
growth restriction. No 
effect of postnatal 
growth 

162 females (Wilkins et 
al., 2006) 
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UN, undernutrition; GA, gestational age; d, day; AFC, antral follicle count; AMH, anti-mullerian hormone; FSH, follicle stimulating hormone;  
abirth weight as a proxy for variable fetal nutrient supply, neonatal follicle parameters determined after calves died as a consequence of dystocia  

at <31d of age, adult follicle data obtained by ultrasound prior to breeding. bbirth weight as a proxy for variable fetal nutrient supply, 3 equal sized 

 groups based on lowest, average and highest birth weight. 

 

 

 

High or low weight 
gain 

Weaning to 
15months 

Beef cattle Measured 
but not 
reported  

Adult 
(15months)  

Weight gain category did 
not impact AFC or overall 
pregnancy rate 

212-300 
females 

(Eborn et al., 
2013) 

Variable fetal 
nutrient supplyb 

Pregnancy Dairy cattle  24% ↓ 
low<high 

Adult 
(spanning 
two service 
periods) 

Low birth weight did not 
impact fertility in first 
service period, protective 
against abnormal ovarian 
cycles in second.  

65 females (Swali and 
Wathes, 
2006) 

Variable postnatal 
growth 
(on- farm data)  

30 to 180, 181-
450d postnatal 
age 

Dairy cattle Not 
reported 

Adult (first 
calving) 

Suboptimal growth  
increased age to first 
breeding and age at 
calving  

392 females (Brickell et 
al., 2009)  

Maternal low/ 
high protein 
 (2 x 2 factorial) 

0 to 93, 93-
180d GA 

Beef cattle Not 
reported 

Pre-pubertal 
(5 months) 

Baseline (but not GnRH 
stimulated) FSH higher 
after low dietary protein 
in first two thirds 
gestation.  

33 males (Sullivan et 
al., 2010) 



 
 

53 
 

Table 5.3. Summary of impact of specific endocrine disrupting chemicals on different aspects of reproductive axis function in sheep. 

Chemical exposure Period of exposure Stage 1o endpoints 
measured 

Main effect(s) reported No. of exposed & 
control  animals 
( gender ) 

Reference 

Bisphenol A  30 to 90d GA 21 months postnatal Hypothalamic GnRH & ESR2 mRNA 
↓, ESR1 ↑ 

12 (females) (Mahoney and 
Padmanabhan, 
2010) 

Bisphenol A 4 to 11 weeks 
postnatal age 

11 weeks postnatal Pulsatile LH secretion ↓ 12 (females) (Evans et al., 2004) 

Bisphenol A 2 to 4 months 
postnatal age 

4 months postnatal Basal LH & LH pulse frequency ↓ 18 (females) (Collet et al., 2010) 

Bisphenol A 30 to 90d GA 6 to 40 weeks 
postnatal 

Duration of first breeding season 
↑, LH surge ↓at induced cycle 

26 (females) (Savabieasfahani et 
al., 2006) 
 

Bisphenol A 30 to 90d GA Fetal,65 and 90d GA Ovarian steroidogenic genes x 2 ↑ 
(d65), microRNA ↓(45 at d65, 11 
at d90) 

19 (females) (Veiga-Lopez et al., 
2013) 

Bisphenol A 4 to 11 weeks 
postnatal age 

11 weeks postnatal Uterine weight ↑, altered uterine 
ESR1 & 2 distribution 

12 (females) (Morrison et al., 
2003) 

Sewage Sludgea  0 to 110d GA Fetal, 110d GA Hypothalamic GnRH, GnRHR & 
GALRs mRNA ↓, pituitary GALRs ↓ 

18 (10 female, 8 
male) 

(Bellingham et al., 
2010) 

Sewage Sludgea 0 to 110d GA Fetal, 110d GA Hypothalamic & pituitary 
kisspeptin mRNA ↓, pituitary 
kisspeptin, LHβ & ERα↓ 

39 (not reported) (Bellingham et al., 
2009) 

Sewage Sludgea 0 to 110d GA Fetal, 110d GA Perturbed ovarian development 23 (females) (Fowler et al., 2008) 
Sewage Sludgea 0 to 110d GA Fetal, 110d GA Testis weight, gonocytes, Sertoli & 

Leydig cell no. ↓, plasma inhibin  & 
testosterone ↓ 

19 (males) (Paul et al., 2005) 

Sewage Sludgea Conception to 7 
months postnatal 

19 months postnatal Spermatogenic abnormalities in 
42% of exposed males 

24 (males) (Bellingham et al., 
2010) 

Methoxychlor 30 to 90d GA 21 months postnatal  Hypothalamic GnRH & ESR2 mRNA 
↓ 

11 (females) (Mahoney and 
Padmanabhan, 
2010) 
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Methoxychlor 30 to 90d GA 40 weeks postnatal LH surge delayed at induced cycle 26 (females) (Savabieasfahani et 
al., 2006) 

Octylphenol 70d GA to birth At birth Pituitary FSH mRNA & protein, 
testis weight, Sertoli cell no. ↓   

Not reported (Sweeney et al., 
2000) 

Octylphenol 70d GA to birth or  
weaning, birth to 
weaning  

I year postnatal  Morphologically abnormal sperm 
↑ (birth to weaning group only) 

22 (males) (Sweeney et al., 
2007) 

Octylphenol 70d GA to birth or 
weaning, birth to 
weaning 

Up to 10 months (end 
of first season) 

All OP groups, onset of puberty ↑, 
duration of first breeding season ↑  

19 (females) (Wright et al., 2002) 

Polychorinated 
biphenyl (2 types) 

Conception to birth 60 days postnatal GnRH induced LH ↑, advanced 
follicle dynamics 

26 (females) (Kraugerud et al., 
2012) 

            adams maintained on plots fertilised with sewage sludge (SS) throughout their breeding lives (typically at least 3 years) prior to mating. SS, by product of waste 

water treatment from domestic, industrial and agricultural sources (Stevens et al. 2003). Bisphenol A, used in the production of polycarbonated plastic and epoxy 

resins (vom Saal & Hughes, 2005); Methoxychlor, a pesticide (ATSDR, 2002); Octylphenol, non-ionic surfactant used in the production of detergents (White et al., 

1994); Polychlorinated biphenyls, industrial pollutants now banned but abundant in environment (Lindenau & Fischer, 1996)  



 
 

55 
 

5.2.2. Effects of EDCs on pituitary gonadotrophins 

The gonadotrophins LH and FSH are important in the female for ovarian development and function 

and to promote ovulation, and in the male to promote testicular development and 

spermatogenesis. Exposure of the male sheep fetus to OP from day 70 until birth  suppressed 

FSHβ gene expression and the percentage of FSH immunoreactive (FSH-ir) cells in the pituitary 

gland while LH gene expression and cell numbers were unaffected (Sweeney et al., 2000). These 

pituitary effects were associated with altered testicular function (see later section). In the female 

fetus populations of pituitary gonadotrophs have been shown to be reduced following exposure to 

SS (Bellingham et al., 2009) as well as the percentage of cells double labelled for Kisspeptin and 

LHβ and those labelled for ESR1. In relation to gonadotrophin secretion per se, FSH release is 

suppressed by OP exposure in fetal animals (Sweeney et al., 2000) while episodic LH has been 

shown to be inhibited by both short and long-term administration of BPA to pre-pubertal ewe lambs 

(Evans et al., 2004; Collet et al., 2010). Conversely, GnRH stimulated LH release was higher in 

pre-pubertal female lambs exposed to PCB 118 (but not PCB 153) during gestation, indicative of 

selective PCB modulation of the responsiveness of the pituitary gland to hypothalamic stimulation 

(Kraugerud et al., 2012). Both PCBs altered follicular dynamics in these ewe lambs (see following 

section) which may be an indirect effect of altered gonadotrophin release or a direct effect on the 

ovary.  

 

 

 

 

 

 

 

 

 

Figure 5.1. Impact of environmental disrupting chemicals on different components of the 

reproductive axis of female (left) and male (right) ruminants. The black arrows indicate published 

work that supports effects of EDCs on hypothalamic steroid receptive neurones, GnRH neurones, 

the pituitary gland, or the gonads. BPA (Bisphenol A), MXC (Methoxychlor), OP (Octylphenol), 

PCB (Polychlorinated biphenyls), SS (sewage sludge).   

 

5.2.3. Effects of EDCs on ovarian and uterine function 

Perturbations induced by EDCs during germ cell formation may cause a permanent reduction in 

reproductive function in the adult. Importantly, these changes in the germ line could be passed to 

later generations as has been documented in rodents (Skinner et al., 2010).  There are well 

documented actions of EDCs on the morphology and development of the sheep ovary 
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predominantly during fetal and early postnatal life. SS exposure alters ovarian dynamics in 110 

day old sheep fetuses reducing oocyte density, advancing follicle development and increasing a 

pro-apoptotic protein (Bax) key to normal ovarian development (Fowler et al., 2008). Similarly, 

exposure to PCB118 and 153 throughout gestation altered follicular dynamics in pre-pubertal 

animals at 60 days after birth. PCB 153 increased the number of primary follicles at this age, while 

PCB 118 increased the sum of secondary, early antral and antral follicles (Kraugerud et al., 2012).  

While the long-term consequences of such enhanced development are unknown, these authors 

suggest that increased recruitment from the primordial pool of follicles could lead to a more rapid 

depletion of mature follicles and premature ovarian failure.  Fetuses exposed to BPA from day 30 

of gestation until necropsy at day 65 or 90 exhibit reduced ovarian steroidogenic gene and micro 

RNA expression for a number of genes central to successful gonadal differentiation and 

folliculogenesis (Veiga-Lopez et al., 2013). These changes in gene expression may also partly 

underlie the altered reproductive endocrine function reported in prenatally BPA exposed ewes 

during their first breeding season (Savabieasfahani et al., 2006). The onset of puberty was not 

impacted by prenatal BPA or MXC exposure in the latter study. In contrast when females were 

exposed to OP for varying periods from 70 days gestation to weaning at 4 months, the onset of 

puberty was advanced by 3 weeks with an associated increase in the duration of the first breeding 

season (Wright et al., 2002).  As well as EDC-induced changes in ovarian function, changes have 

also been noted at the uterocervical level. Specifically, BPA (but not OP) exposure of 

ovariectomised ewe lambs for 6 weeks from 4 weeks of age increased uterine weight (in part due 

to endometrial oedema), increased keratinisation of the cervical epithelium and altered the 

distribution of oestrogen receptors in the uterine endometrium. Further work will be necessary to 

determine if these pathological changes impact on the ability of ovary-intact ewes to carry healthy 

and viable lambs (Morrison et al., 2003).  

In cattle, a number of studies demonstrate negative impacts of organochorines, OPs and PCB on 

the developmental competence of the oocyte when added to the culture media during in vitro 

maturation procedures (Tiemann et al., 1996; Alm et al., 1998; Pocar et al., 2001a; Pocar et al., 

2001b). However, there is no corresponding data following EDC exposure in vivo and this is clearly 

required if the relevance to beef and dairy fertility is to be ascertained. Indeed for both cattle and 

sheep there is a complete dearth of information on the programming effects of EDCs on crucial 

aspects of female offspring reproductive function including ovulation and fertilisation rates, embryo 

quality, pregnancy rates and lifetime litter size. 

 

5.2.4. Effects of EDCs on testicular function  

OPs have been shown to variously disrupt testicular development and function in sheep following 

both prenatal and early postnatal exposure. Maternal exposure of dams to OP from day 70 of 

gestation until birth resulted in decreased testicular weight and a reduction in Sertoli cell number 

at birth (Sweeney et al., 2000) but an equivalent exposure did not impact semen quantity, quality 

or IVM/IVF characteristics at 12 months of age (Sweeney et al., 2007). In contrast when males 

were exposed to OP from birth to weaning (but not from day 70 of gestation to weaning) the 

number of morphologically abnormal sperm was increased by 12% (Sweeney et al., 2007). The 

impact of this small increase in the proportion of abnormal sperm on ram fertility in field conditions 

has not been assessed.  Pre- and early postnatal exposure to SS has also been shown to disrupt 

testicular function. In fetal life (day 110), long-term maternal SS exposure resulted in a major 

attenuation of fetal testicular development associated with reduced testicular hormone secretion 

(Paul et al., 2005). When exposure was continued until weaning at 4 months and tissues 
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subsequently collected at 19 months of age, about half of the exposed rams had testes that 

appeared to be morphologically normal, while the other half had major reductions in germ cell 

number and a greater number of Sertoli cell- only tubules (Bellingham et al., 2012). This 

observation is of particular interest because it indicates that specific individuals may be more 

susceptible to EDC disruption of the reproductive axis than others and reinforces that population 

data may underestimate the problems associated with EDC exposure. Moreover it suggests that 

identifying at risk or affected individuals on farm could be a challenge.    

 

5.3. Evidence of epigenetic involvement 

Our understanding of the molecular mechanisms that putatively underlie the prenatal 

programming of domestic livestock fertility is in its infancy. Epigenetic marks are candidates for 

bearing the memory of early life exposure and both primordial germ cells (the direct progenitor of 

sperm or oocytes) and the pre-implantation embryo are subjected to intense epigenetic 

modifications (Seisenberger et al., 2013). As discussed earlier (Section 2), DNA methylation in 

germ cells is erased and new DNA methylation is acquired during multiplication of spermatogonia 

in the male (fetal event) while in females it primarily takes place during follicle/oocyte growth and 

maturation (after puberty and prior to each ovulation). Thus the key times when offspring are 

potentially susceptible to epigenetic modification is likely to be gender specific with males 

theoretically being more sensitive than females during fetal life (Dupont et al., 2012).  

Variations in the maternal, placental and fetal hormonal milieu during intrauterine development 

are postulated as epigenetic signals (Fowden et al., 2010). As the glucocorticoids and reproductive 

steroids are highly sensitive to maternal nutrition (Fowden et al., 2010; Wallace et al., 2011) and 

EDCs have major oestrogenic properties (Fowler et al., 2012) they are clearly important potential 

candidates in this respect. However to date there is no direct link between these putative 

environmental cues and epigenetic modifications that relate to a fertility phenotype in farm species. 

This is primarily because these mechanisms have not been investigated to any great extent in 

farm animals. In contrast there is compelling evidence from rodent studies that at least some of 

the effects of environmental chemicals such as DES (Alworth et al., 2002) and the isoflavonoid 

phytoestrogen Genstein (Tang et al., 2008)  are mediated via changes to DNA methylation. 

(Anway et al., 2005) went further to demonstrate male-germline mediated epigenetic 

transgenerational effects of the antiandrogenic compound vinclozolin (an agricultural fungicide) 

and the oestrogenic compound methoxchlor on gonadal sex determination, which persisted to the 

F3 generation in the rat.   

 

5.4. Summary and interim conclusions 

There is reasonable evidence to support a role for early life nutrition in the programming of specific 

aspects of female offspring fertility. In sheep the most robust effects to date relate to the negative 

impact of low fetal nutrient supply on the number of ovarian follicles. However even this may not 

limit litter size until relatively late in a female’s breeding life or until she experiences a second 

environmental challenge such as poor nutrition or repeated superovulation in adult life. A similarly 

robust impact of poor prenatal nutrition on the ovarian follicle reserve in beef cattle is also 

emerging and in both species low birth weight may be a useful proxy marker of the individuals 

most likely to be perturbed. In contrast, in male offspring the negative impact of poor prenatal 

nutrient supply is likely to be confined to the first breeding season and of little consequence to 
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fertility thereafter. To date the most worrying implication of EDC research relates to the higher 

incidence of spermatogenic abnormalities in male offspring. Further, while early life exposure to 

EDCs clearly impact the reproductive axis at the brain, pituitary and ovarian levels, the impact on 

female offspring fertility and fecundity has simply not been examined in the relevant farm species. 

 

6. Impact of advanced (assisted) reproductive technologies (ART)  

Artificial insemination (AI) was developed for livestock during the late 1930s and, since the advent 

of semen cryopreservation pioneered during the 1940s, has completely revolutionised global cattle 

breeding. Around 20% of the estimated 550 million breeding cattle and buffalo that populate the 

planet are AI (Thibier and Wagner, 2002). Uptake in sheep breeding is limited by comparison. In 

part this is attributable to the more extensive systems of husbandry associated with this species, 

but uptake has also been constrained by biological factors associated with cervical insemination 

that require the use of more invasive laparoscopic techniques (Anel et al., 2006). In the current 

article AI with conventional non sex-sorted semen is not considered to be an ‘advanced’ 

reproductive technology. That accolade is reserved for the use of sex-sorted semen, and 

particularly in vivo derived (IVD) and in vitro produced (IVP) embryos. Compared to AI, the transfer 

of IVD and IVP embryos is largely restricted in cattle to breeding within elite/nucleus herds. 

Previous large-scale studies that sought to increase calf and/or carcass output in commercial beef 

cattle through the induction of single and/or twin pregnancies by embryo transfer, whilst 

successful, proved technically challenging and only marginally beneficial compared to AI (Sinclair 

et al., 1995a; Sinclair et al., 1995b). Such experiences subsequently limited industry uptake to that 

directly associated with genetic improvement. Nevertheless, recent estimates place the number 

of embryos transferred globally at just under 1 million (IETS, 2012). The number of IVP embryos 

transferred has quadrupled over the last decade and now constitutes 40% of total embryos 

transferred in cattle. One driver for the current surge in interest in IVP embryos is the prospect of 

genomic selection of Day 7 embryos (Lauri et al., 2013). This can significantly reduce the breeding 

interval (and so increase response to selection) but can also reduce wastage and associated costs 

that arise from the production of unwanted calves when sex-sorted semen is used during in vitro 

fertilisation (IVF).  

The first calf (named Virgil) born following the transfer of IVP embryos was reported by Benjamin 

G Brackett and colleagues at the University of Pennsylvania in 1982 (Brackett et al., 1982). Further 

developments and refinements to bovine IVP arose during the 1980s leading to the global 

commercialisation of this technology by the early 1990s. However, the first reports of 

developmental anomalies leading to the birth of large calves and associated obstetrical 

complications following the transfer of IVP embryos arose soon thereafter. These observations 

were later reported in sheep, and collectively became known as the ‘Large Offspring Syndrome’ 

(LOS). It is beyond the scope of the current article to review this topic in detail. This has been done 

elsewhere (e.g. Young et al., 1998; Sinclair et al., 2000; van Wagtendonk-de Leeuw et al., 2000; 

Farin et al., 2006). However, the study of in utero and post-natal development following the transfer 

of IVP and cloned embryos (which undergo a period of in vitro culture) has served to highlight the 

sensitivity of the periconceptional period, and the earliest stages of mammalian development, to 

environmental influences. Given that from fertilisation to hatching (at around Day 7/Day 8 of 

gestation) ruminant embryos contain a large population of pluripotent cells, it follows that many of 

the altered phenotypes described in offspring (discussed next) may have arisen, at least in part, 

as a consequence of epigenetic alterations to DNA and associated proteins in a number of 

developmentally important genes (discussed later).   
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6.1. Long-term post-natal consequences of ART 

Differences in birth weight between calves/lambs conceived naturally or by AI, and calves/lambs 

derived from IVP embryos, normally disappear at around 6 to 12 months of age (Wilson et al., 

1992; Walker et al., 1996), indicating that in utero overgrowth is transient and doesn’t persist post-

natally; although in the study of (McEvoy et al., 1998) oversized calves at birth derived from IVP 

embryos had abnormally large hearts when slaughtered at just over 1 year of age. Anecdotal 

evidence based on a limited number of observations from some of the early studies indicated that 

IVP derived offspring of the same genotype may be more muscular. Subsequent studies in both 

cattle and sheep confirmed that primary muscle fibre cross-sectional area was increased as was 

the ratio of secondary to primary muscle fibres in late gestation foetuses (Maxfield et al., 1998; 

Crosier et al., 2002). These effects in sheep were associated with a shift in the temporal 

expression of Myf-5, a member of the MyoD gene family responsible for inducing mesodermal 

precursor cells to differentiate into myoblasts and to proliferate, both under the influence of Sonic 

hedgehog and Wnt-1 (Maltin et al., 2001). In contrast, there was no effect of embryo source on 

expression of Myf-5, MyoD or Myogenin (MYOG) in skeletal muscle of Day 222 bovine fetuses; 

instead there was a reduction in expression of mysotatin (MSTN) (Crosier et al., 2002). Loss of 

function of this transforming growth and differentiation factor-beta (TGF-β) family member is 

known to lead to muscle hypertrophy in cattle and sheep (Rodgers and Garikipati, 2008), the 

origins of which occur pre-natally. These observations are remarkable because the initiating 

factors during IVP would have had to act on the population of pluripotent cells that constitute the 

pre-implantation embryo; reinforcing earlier statements in this article that the earliest stages of 

mammalian development are particularly sensitive to environmental perturbation. 

Few studies have formally evaluated carcass and muscle characteristics of offspring conceived 

by IVP, and none of these were designed specifically to address the issue of whether or not the 

IVP process itself altered these traits. Patterson et al. (1993) assessed carcass characteristics of 

single and twin beef calves derived from IVP embryos. They concluded that, following ET, viable 

twins have similar beef producing potential to single-born calves. Similarly, (Amen et al., 2007) 

used IVP and ET to produce reciprocal crosses of Bos indicus and Bos taurus cattle in order to 

assess carcass and meat traits, but no assessment of independent effects of ART could be made. 

The study of (Sinclair et al., 1995a) is often cited (wrongly) as providing evidence that the process 

of IVP itself leads to increased carcass weights with greater yields of saleable meat. Semen from 

a single beef sire was used to inseminate Hereford x Friesian cows (to produce three-quarters 

beef cross offspring) and to fertilise oocytes derived from three-quarters crossbred beef heifers 

(predominantly Charolais and Simmental x Hereford x Friesian) in order to produce seven-eighths 

beef cross calves. The objective was to demonstrate that, in so doing, IVP-ET could be used to 

produce better quality calves. Carcass and saleable meat yields were greater for IVP-ET derived 

offspring than for AI Controls, but this was almost certainly due to the selection/breeding process 

and not the IVP per se.  

Similarly, until very recently no studies have assessed long-term effects of IVP-ET on subsequent 

offspring fertility and milk yield. However, a large study (comprising 426 ET recipients) in Florida, 

involving the transfer of fresh or frozen-thawed and sexed IVP embryos vs AI in Holstein cows, 

found no effects of ART on pregnancy rates to first service or daily milk yields during first lactation 

in resultant female offspring (Bonilla et al., 2014). Consequently, it is unlikely that these traits 

would be affected in beef cattle. 
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6.2. Long-term effects of reproductive cloning 

Pre-natal losses, obstetrical complications and post-natal morbidity associated with reproductive 

cloning generally fall under the heading of LOS, have been reviewed elsewhere (e.g. Young et al., 

1998; Chavatte-Palmer et al., 2000) and won’t be considered further except to state that the 

incidence and severity of pregnancy losses, obstetrical complications and neonatal morbidity are 

usually greater for pregnancies generated from embryonic-cell nuclear transfer embryos (Garry et 

al., 1996), but particularly from somatic-cell nuclear-transfer (SCNT) embryos (Hill et al., 1999; 

Chavatte-Palmer et al., 2004), than with either IVP of IVD embryos. Attention instead is focussed 

on the health and productivity of cloned offspring. Here again this topic has been extensively 

reviewed elsewhere driven largely by statutory requirements of various government agencies (e.g. 

US Federal Drug Agency, European Food Standards Authority) to ensure that cloning does not 

compromise animal welfare and that food products from cloned animals are safe for human 

consumption. The available evidence indicates that SCNT-cloned offspring that survive to puberty 

are generally healthy and that the composition and nutritive value of milk and meat products from 

cloned (non-transgenic) livestock does not differ from that of animals conceived naturally (Norman 

and Walsh, 2004; Takahashi and Yoshihiko, 2004; Tome et al., 2004, Heyman et al., 2007; Laible 

et al., 2007; Rudenko and Matheson, 2007; Rudenko et al., 2007; Watanabe and Nagai, 2008). 

There does appear, however, to be subtle differences in muscle fibre contractile types (i.e. more 

slow-twitch oxidative relative to fast-twitch glycolytic fibres) in young cloned heifers (at around 8 

months of age) but again, as with general issues regarding animal health, these compositional 

differences in muscle subsequently disappear following the onset of puberty and are not evident 

in cattle > 12 months age (Jurie et al., 2009).   

 

6.3. Epigenetic programming of long-term development 

It became apparent early on that many of the LOS features resembled that of naturally occurring 

overgrowth syndromes in humans (e.g. Beckwith-Wiedemann syndrome (BWS)) which are 

associated with errors in an imprinted cluster of genes on human chromosome 11 (Sinclair et al., 

2000). This led to the discovery that LOS in sheep was due, at least in part, to a loss of imprinting 

and expression of the gene encoding the type 2 insulin-like growth factor receptor (IGF2R) in a 

range of tissues, but particularly those emanating from the mesodermal lineage (Young et al., 

2001). This loss of imprinting arose as a consequence of loss of DNA methylation in the second-

intron differentially methylated region (DMR2) of that gene. Loss of methylation at this DMR, and 

a conserved DMR located upstream of the ovine H19 gene, was prevalent among SCNT-cloned 

lambs (Young et al., 2003) and SCNT-cloned calves (Smith et al., 2012), leading to biallelic 

expression of these imprinted genes.   

Germ-line epigenetic marks are established in a parent-specific manner in a small subset of genes 

(current maximum best estimates in the mouse are between 300 to 400; (Kelsey and Bartolomei, 

2012) that facilitate tissue and developmental stage-specific monoallelic expression of affected 

genes following fertilisation. These processes are best understood in the mouse (Cedar and 

Bergman, 2009; Tomizawa et al., 2012) with only limited data available in ruminants (Thurston et 

al., 2008). The dynamics of imprint establishment during gametogenesis and early embryogenesis 

(coincident with procedures used in ART) are such that, depending on the precise timing and 

nature of the procedural insult, it is highly probable that different combinations of imprinted genes 

may be affected to a greater or lesser extent. Thus, Bebbere et al. (2013) failed to detect 
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differences in allelic expression ratios and IGF2R-DMR2 methylation in the few (n = 4) overgrown 

IVP fetuses studied compared to normal weight IVP and in vivo conceived fetuses at Day of 80 of 

gestation in the cow. Instead, (Chen Cárdenas et al., 2013) found a loss of imprinting leading to 

biallelic expression of KCNQ1OT1 (the gene most misregulated in BWS) in bovine LOS fetuses 

derived from IVP embryos, and that this is associated with a loss of methylation at the KvDMR1 

on the maternal allele. This observation confirmed an earlier report of abnormal hypomethylation 

of KvDMR1 and expression of KCNQ1OT1 in 2/7 SCNT-cloned calves and 1/2 IVP-derived calves 

(Hori et al., 2010). Although generally highly conserved there are also recognisable differences in 

imprinting within eutherian mammals that could account for many such differences between 

species; differential imprinting at the IGF2R locus being a case in point  (Das et al., 2009; Renfree 

et al., 2013).  

The emerging picture is further complicated by the fact that many of these imprinted genes are 

polymorphic. In taurine cattle, for example, single-nucleotide polymorphisms (SNPs) are known to 

exist in at least seven imprinted genes (including IGF2R) and to be associated with a number of 

commercially important traits including those associated with fertility (e.g. gestation length, calving 

difficulty, perinatal mortality), milk yield (e.g. protein percentage, somatic cell counts) and growth 

(e.g. carcass weight, conformation, rump depth) (Magee et al., 2010; Berkowicz et al., 2011). 

There is also some evidence of allelic switching of imprinted IGF2R in SCNT-cloned bovine 

fetuses where the paternal allele is imprinted in one tissue whilst the maternal allele is imprinted 

in another tissue (Suteevun-Phermthai et al., 2009). These potentially confounding factors could 

account for at least some of the discrepancies and apparent stochastic effects observed in 

aberrant genomic imprinting patterns between studies that frequently report effects in only small 

numbers of animals.  

Finally, whilst the focus of most research has understandably been directed towards errors in 

genomic printing following ART in both animals and humans, it is highly likely that the epigenetic 

status, and possibly expression, of many more non-imprinted genes are also affected (Grace and 

Sinclair, 2009). Surprisingly, this hypothesis has never fully been tested. Some groups (e.g.  

(Santos et al., 2010) have used immunoflorescent techniques to visually quantify global 5-methyl-

cytidine staining to assess effects of ART procedures on DNA methylation in embryos, but this 

method lacks sensitivity, cannot identify locus-specific changes in methylation and possesses 

other methodological limitations (Li and O'Neill, 2012). However, in a microarray analysis of 1,536 

CpG sites in just over 700 genes, (Katari et al., 2009) found that imprinted loci were no more or 

less likely to be differentially methylated than non-imprinted loci. DNA in that study was extracted 

from human cord blood and placentae from term pregnancies established naturally or following 

IVF. More recent data in humans and mice, where genome-wide DNA methylation was assessed 

by array of immunoprecipitated DNA (MeDIP-array), confirm epigenetic differences in promoter 

methylation of non-imprinted genes between offspring conceived naturally or by IVF (Li et al., 

2011; Oliver et al., 2012). These studies are somewhat preliminary in that they were limited by 

scale and/or tissues sampled (e.g. peripheral blood in the human study). The platforms used are 

also somewhat insensitive compared to contemporary deep-sequencing approaches that can 

provide single-base pair resolution.  

 

6.4. Interim conclusions 

Sweeping changes to DNA methylation and chromatin remodelling take place in gametes and in 

the preimplantation embryo during the normal course of development, rendering these cells 
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particularly vulnerable to environmentally induced epigenetic modifications to DNA as can occur 

during ART, leading to problems such as LOS. It is very likely that a broader but more subtle range 

of aberrant phenotypes, than have been described to date, manifest following the use of these 

technologies, but that under normal conditions of commercial livestock production these go 

unnoticed. The major adverse phenotypes include pregnancy failure following ET, and an 

increased but variable incidence of obstetrical complications during parturition. The latter effects 

occur less frequently and more sporadically these days for reasons that are not fully understood. 

There is scant information on the longer-term effects of ART on farmed livestock. The available 

evidence indicates that the vast majority of ART offspring that reach puberty are for the most part 

normal. However, in beef cattle at least, genomic imprinting significantly contributes to the genetic 

variance of a number of commercially important traits, with estimated proportions of between 8 

and 25% of total additive genetic variance (Neugebauer et al., 2010). It remains to be determined 

if procedures used in ART might affect these traits to any great extent.    

 

7. Industry Relevance and Recommendations 

The previous sections of this report provide a detailed contemporary overview of our 

understanding of factors that affect early development and the consequences that this can have 

for life-long health, wellbeing, productivity (including growth, body composition and carcass 

composition) as well as fertility. The aforementioned discussion considered evidence from other 

farm animal species, humans and model organisms such as rodents, where the burden of 

evidence resides for many traits. The current section draws conclusions on those effects most 

likely to be of relevance to beef cattle and sheep. In so doing it is important to acknowledge a 

number of caveats:  

1) There are a number of traits that have not been considered fully in the target species and 

aspects of normal agricultural practice that could have an impact on prenatal development but 

have never been assessed. In particular those relating to animal management and potential for 

psychological stress, such as aspects of housing, social stress from interactions with 

conspecifics (shown to be very influential in pigs for example but rarely assessed in sheep and 

never in beef cattle), and the impact of weaning of the present calf on the subsequent offspring 

in the pregnant beef cow. 

2) Studies are almost invariably carried out under controlled experimental conditions and some 

of the treatments may only have a minor bearing on beef cattle and sheep production and 

health.  

3) Many of the aforementioned studies have focussed on developing our mechanistic 

understanding of the underlying biology (including epigenetics) in farm animals rather than 

clearly establishing commercially relevant adult phenotypes. This reflects the source and nature 

of funding over the past two decades, which has largely come from research councils (i.e. 

BBSRC, MRC), charities (e.g. BHF and Cancer Research UK), and from overseas (e.g. EU, 

NIH), and which have a clear biomedical slant.  

4) In experimental studies frequently only single factors were assessed, with other influences 

being tightly controlled. In reality animals will be exposed to multiple, concurrent stressors (e.g. 

undernutrition, high stocking density and thermal challenge) which can have a greater impact 

than when applied individually.  
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With these caveats in mind the following traits in offspring which are of commercial importance for 

English beef and sheep producers and which can be influenced by fetal development during 

include:  

• Dystocia and neonatal survival  

• Growth rate and feed conversion  

• Offspring health and disease susceptibility  

• Saleable meat yield and meat quality  

• Behavioural traits associated with ease of handling  

• Reproductive potential including fertility and litter size  

 

7.1. Maternal nutrition and body-condition score (BCS) 

Of the risk factors impacting on commercially relevant traits, the vast majority of studies have 

focussed on nutritional impacts, elicited through experimental manipulations of total feed, protein 

level or dietary fat, via pasture management (e.g. sward height) or through assessing or 

manipulating BCS.  There is more evidence available for sheep than cattle, but the evidence that 

exists for both species is summarised below. 

7.1.1. Sheep   

7.1.1.1. Lamb birth weight and survival (Section 3.2.1.): Maternal undernutrition during late 

pregnancy (after day 100) is reliably reported to reduce lamb birth weight, whereas the effects of 

undernutrition during early gestation are more variable, with reports of both decreases (although 

genotype specific; Rooke et al., 2010) and increases (Holst et al., 1986) in birth weight. Other 

studies suggest that maternal BCS at conception may be an important determinant of birth weight 

(Wallace et al., 2010; Wallace et al., 2011) although nutritional intake during late gestation seems 

to be more important than BCS (Thompson et al., 2011). Some of these apparent discrepancies 

between studies may arise as a consequence of differences in placental development, as almost 

two-thirds of the variation in birth weight is attributable to placental mass (Robinson et al., 2000). 

In this comprehensive review of nutritional effects on fetal growth, these authors explained how 

during the critical period of placental growth (i.e. days 35 through to 80) the degree of ewe maturity, 

BCS and plane of nutrition interact to affect pregnancy outcome and birth weight. Thus, for mature 

ewes of good, but not poor, BCS at mating, modest undernutrition from Days 30 to 90 of gestation 

can enhance placental growth. In contrast over-nutrition, particularly of young ewes, can reduce 

both placental and fetal growth leading to reduced birth weights (Wallace et al., 2010; Wallace et 

al., 2011). As lamb birth weight is an important risk factor for neonatal mortality it is not surprising 

that lamb deaths are influenced by pre-natal nutrition. Some studies also report increased 

neonatal mortality, in the absence of differences in birth weight, when ewes are severely 

undernourished around conception or during early to mid-pregnancy (Vincent et al., 1985; 

Heasman et al., 2000; Rooke et al., 2010). Similarly nutritional supplementation during mid-

gestation can increase lamb survival to weaning (Kleemann et al., 1993; Encinias et al., 2004; 

Mulvaney et al., 2008).  

Take-home messages: For mature ewes producers should strive to attain optimal BCS (i.e. a 

score of 3.5 using the recognised EBLEX standard) and allow a modest (i.e. 0.5 units) loss of 

condition up to the end of the 3rd month of pregnancy. Subsequently, dietary allowances for 

pregnant ewes should be tailored to match that of fetal number (i.e. litter size). Young growing 

pregnant ewes should be fed to allow a modest rate of growth of around 80g/day throughout 

gestation. There is compelling evidence that for housed ewes shearing during the 3rd month of 
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pregnancy can increase birth weight of lambs. Evidence of longer-term benefits, in terms of lamb 

growth and finishing weights, is limited. 

Recommendations for research: Current EBLEX funded studies developing KPIs for 

commercial flocks will generate important data linking BCS in ewes to pregnancy outcomes and 

neonatal viability. However, thought should be given as to how these studies could record birth 

weights. Scope exists on monitor farms to formally assess and quantify long-term benefits of 

shearing housed ewes during pregnancy. 

 

7.1.1.2. Carcass traits (Sections 4.1. and 4.2.): Mid pregnancy undernutrition has been reported 

to result in increased lamb growth and weight at 63 and 120 days postnatal, associated with a 

tendency for heavier carcass weights (Ford et al., 2007). However, this seems to be achieved 

through increased kidney and pelvic fat and reduced muscle weights. Additionally, ewes fed high 

energy diets during mid to late gestation produce offspring with more carcass fat and a lower 

percentage lean tissue in comparison to ewes fed lower energy diets (Long et al., 2010). Over-

feeding of mothers during pregnancy also results in more fat in the carcasses of female lambs, 

but this can be reversed by short period of underfeeding (Rattanatray et al., 2010). It appears that 

effects of maternal diet during pregnancy on muscle fibre number and muscle mass are transitory 

and can be modified subsequently.  

Take-home messages: It appears that in all but the most extreme cases of maternal malnutrition 

during pregnancy, there is little evidence that muscle development can be manipulated in utero in 

a manner that would lead to permanent and measurable differences in carcass and saleable-meat 

yields in slaughtered offspring. Subtle alterations in muscle fibre type and in muscle mass can be 

induced at various stages during both pre- and post-natal development, so that systems of 

management should consider the life-course of the animal destined for slaughter. Effects on 

organoleptic properties of meat that arise as a direct consequence of in utero mediated 

modifications to muscle development are not known but are likely to be minimal. In contrast, 

although less is known about the developmental processes that lead to the formation of mature 

adipose tissues, it appears that these depots in offspring may be influenced by maternal diet during 

pregnancy to a much greater extent than is the case for muscle. At present, however, it is difficult 

to predict the long-term consequences of either restricted or excessive feeding during pregnancy 

on final carcass composition and meat quality.  

Recommendations for research: If one could record birth weight of lambs on current EBLEX 

sponsored monitor farms, and information was available on ewe BCS during pregnancy, then it 

should be possible to generate a large body of data within just a couple of seasons on how this 

might affect whole-body composition and saleable meat yields. Such information would help guide 

future research endeavours to more directly investigate the effects of in utero development on 

post-natal growth, body composition, saleable meat yields and overall production efficiency. 

   

7.1.1.3. Appetite regulation (Sections 4.3 and 1.5.1): In an era where reducing emissions of 

greenhouse gases (GHG) from ruminants are of paramount importance, and where there is a need 

to improve residual-feed intake (RFI) in order to reduce feed costs, the significance of appetite 

regulation cannot be overestimated. Yet, in the context of developmental programming, this is the 

least-well researched and understood trait in ruminant livestock. Most of what we know is limited 

to rodents. The hologenome concept in the context of developmental programming is a relatively 
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recent development but merits consideration both in the context of immunological protection 

afforded to neonates and putative long-term implications for improving RFI and reducing GHG. 

Take-home messages: There is insufficient evidence to indicate whether or not appetite 

regulation can be programmed permanently in utero.  Small lambs at birth will often eat more over 

the life course to attain slaughter weights comparable to their normal birth-weight contemporaries, 

but this apparently is only by virtue of their small size at birth.     

Recommendations for research: The huge gap in our understanding of how basic mechanisms 

regulating appetite in both sheep and cattle can be programmed in utero, and the implications that 

the hologenome concept could have for reducing GHG and improving RFI, identify appetite 

regulation as a future research priority; but one led by research councils such as BBSRC in the 

first instance.  

  

7.1.1.4. Welfare traits (Sections 3.2.1, 3.2.2, 3.2.3):   Low birth weight reduces lamb neonatal 

behavioural development and sucking behaviours (Dwyer et al., 2003), and supplemental fat in 

pregnancy increases lamb activity (Capper et al., 2006; Pickard et al., 2008) as does shearing in 

late pregnancy (Banchero et al., 2010); all of which contribute to lamb survival (see section 

7.1.1.1). Furthermore, undernutrition of the late pregnant ewe can reduce the expression of 

maternal behaviour (Dwyer et al., 2003), increasing the incidence of rejection, affecting ewe-lamb 

bonding, colostral antibody transfer to the neonate, and susceptibility to infectious disease. 

Maternal fish oil supplementation, however, reduces colostrum yield, and fat concentration, and 

has variable impacts on proportions of different types of fats in colostrum (Capper et al., 2006, 

Annett et al., 2008). Similarly, colostrum yield and composition (IgG) is reduced in high intake 

ewes in comparison to ewes fed a maintenance diet (Wallace et al., 2010). The overall impact of 

supplemental nutrition on welfare traits in lambs (survival) is therefore positive for ewe and lamb 

behaviour but may negatively influence the acquisition of passive immunity through its impact on 

colostral antibodies; although this remains to be confirmed. Intriguingly, early or late maternal 

undernutrition reportedly increases the ability of lambs to absorb colostral IgG (Hammer et al., 

2011), which may serve as an adaptation to the poor prenatal environment.   

Specific nutrients and minerals in the diet have been associated with lamb adequate behavioural 

development at birth, particularly cobalt, iodine, selenium and vitamin E. For each, deficiency in 

pregnancy leads to adverse neonatal outcomes (reviewed by Rooke et al., 2008). However, there 

is little evidence that supplementation above requirements has any beneficial effects, and in some 

cases may have a detrimental impact due to the known-toxicity of some of these nutrients. 

There are some reports that maternal undernutrition, particularly if severe and early in gestation, 

causes an increase in stress reactivity (either assessed in terms of behavioural reactivity or 

physiological responses of the offspring), although other studies show opposite effects (see 

Tables 3.2 and 3.3). There is also some evidence for sexually dimorphic responses in sheep as 

has been frequently reported in the rodent literature. Reaching a definitive conclusion in this area 

is hampered by the relatively low number of studies, the different nutritional paradigms assessed 

and the lack of consistency in outcome measures used. In addition, in many of these experimental 

studies ewes are fed in a rather artificial way to achieve the undernutritrion treatment, which may 

compound the nutritional effects with psychological stress (e.g. feeding animals housed in 

individual pens) and does not mimic normal farm practice.  
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Only two papers (Erhard and Rhind, 2004; Gutleb et al., 2011) have considered whether maternal 

grazing of sewage sludge treated pastures impacts on the behaviour of offspring. The evidence 

suggests that a dysmaculinisation of male lamb behaviour may occur, which may reflect in altered 

development of reproductive organs as described in section 5.1.1.  

Take-home messages: Maternal nutrition affects the expression of ewe and lamb behaviours at 

parturition, with young and inexperienced ewes being particularly vulnerable to behavioural 

disturbance. Feeding regimes as described in 7.1.1.1, therefore, will also contribute to improved 

expression of ewe and lamb behaviours at birth. In areas where there are deficiencies in pasture 

cobalt, iodine, selenium or vitamin E, supplementation will be beneficial for improving lamb 

behaviours and colostral uptake. However, supplementation of an adequate maternal diet is not 

recommended as at best this may have no benefit, and at worse can lead to detrimental effects. 

At present no convincing picture is emerging of a detrimental impact of nutrition on subsequent 

behavioural reactivity, although several studies have reported alterations in responsiveness. 

Whether this is associated with poorer welfare, or increased difficulty in handling, has not been 

clearly demonstrated.    

Recommendations for research: Evidence for a link between maternal undernutrition and 

behavioural reactivity likely to impact on welfare or ease of handling might be obtained by 

incorporating measures of responses to standard husbandry activities (weighing, restraint for 

vaccination, yarding) to those studies proposed above for monitor farms (see sections 7.1.1.1 and 

7.1.1.2). This could yield a comprehensive picture of the impact of maternal nutrition on offspring 

outcomes that could, for example, be used in whole-farm modelling to determine optimal nutritional 

strategies. Studies to determine practical methods to boost colostral antibody transfer between 

ewes and lambs, and characterise the health outcomes, would also be beneficial.  

7.1.1.5. Offspring fertility (Section 5.1.1.): There is limited evidence for lasting effects of 

undernutrition during pregnancy on fertility of offspring leading to poorer pregnancy rates and/or 

reduced litter sizes. Effects reported (e.g. Rae et al., 2002a, Long et al., 2010) are modest and 

would be difficult to detect under commercial conditions without the use of powerful statistical 

techniques which are beyond the scope of most producers. Two studies suggest a decrease in 

litter size and lifetime lamb production in ewes undernourished as fetuses or as lambs (Langlands 

et al., 1984; Gunn et al., 1995). Undernutrition was achieved in these studies either by restricting 

herbage allowance, through increases in stocking density, or by preventing access of pregnant 

ewes and/or lambs to supplementary feed. However, these adverse effects on offspring fertility 

were only expressed when suboptimal nutritional conditions persisted into adulthood. There is also 

some evidence for reduced lifetime productivity and litter size in ewe lambs of low birth weight, 

and in ewe lambs experiencing poor growth rates during early life (Rhind and McNeilly, 1998; 

Gardner et al., 2009), although high birth weight lambs are also reported to have smaller litters 

(Gardner et al., 2009). 

Sewage sludge (a treated by-product of human domestic, agricultural and industrial waste water) 

contains a complex mix of organic and inorganic pollutants, which is deemed non-hazardous when 

applied to agricultural land, as it results in low to modest increases in environmental chemicals 

within soil (Rhind et al., 2002; Rhind et al., 2010). However, it has been demonstrated that 

pregnant ewes grazing treated pastures give rise to offspring with subtle defects in development 

of their reproductive organs (Fowler et al., 2012). Male offspring appear to be most affected 

(Bellingham et al., 2012), but as this species has only ever been used as a ‘model system’ to gain 

insights into the likely consequences of exposure to environmental chemicals in humans, so long-

term consequences on offspring fertility have never fully been explored.     
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Take-home messages: Although difficult to fully quantify the benefits for offspring fertility per se, 

nutritional strategies during pregnancy designed to optimise birth weight and neonatal viability 

(Section 7.1.2.1) are likely to have positive knock-on effects for subsequent offspring fertility. 

There is compelling evidence that exposure to environmental chemicals (as can occur on sewage-

sludge treated pastures) during in utero development can affect components of the reproductive 

axis. Male fetuses are more sensitive than female fetuses, with defects in testis development and 

sperm production being detected in ram lambs at 20 months of age. Consequences for 

subsequent ram fertility remain to be ascertained.    

Recommendations for research: Extending currently funded KPI studies to include flocks that 

breed their own replacements would allow a full and quantitative assessment of pregnancy 

nutrition on offspring fertility and reproductive rate. If such studies were allowed to run for several 

years on selected monitor farms, representing different breeds, then robust quantitative 

assessments could be made over successive parities in offspring under commercial conditions. 

As around 1.6 million tonnes of sewage sludge (i.e. 73% of that produced) is dispensed on 

agricultural land in England and Wales there is an urgent need to formally assess its effects on 

fertility in grazing ruminants. The fertility of rams born and reared on such pastures is most at risk. 

Effects in cattle are likely to be similar but have not been investigated. 

 

7.1.2. Beef cattle 

7.1.2.1. Calf birth weight and survival (Section 3.2.1): Calf birth weight has been shown to be 

either decreased or unaffected by maternal undernutrition (e.g. Long et al., 2010; Micke et al., 

2010) or fat supplementation in late gestation (Petit and Berthiaume, 2006); and likewise calf 

mortality is reported to be increased with undernutrition (e.g. Corah et al., 1975) or unaffected (% 

calves weaned: Freetly and Cundiff, 1998). The variability in these studies may be related to 

differences in the timing of undernutrition, and/or the severity of nutritional restriction. This has not 

been explored in detail in cattle for birth weight, although there is some evidence for an effect on 

calf growth (e.g. low nutrition in early gestation reportedly does not affect calf growth rate or growth 

rate (Freetly and Cundiff, 1998; Long et al., 2010)). In contrast, late gestation protein 

supplementation increases calf weaning weight and weight at breeding or at first pregnancy 

(Martin et al., 2007; Larson et al., 2009). There are no reported effects of protein supplementation 

or restriction in late gestation on the incidence of calving difficulty or abnormal presentations 

(Carstens et al., 1987; Funston and Deutscher, 2004; Martin et al., 2007), which are the major risk 

factors for neonatal mortality in cattle. 

Take home messages: The impacts of nutrition in pregnancy on calf growth and productivity are 

highly variable. There is good evidence that undernutrition in late pregnancy impacts on calf birth 

weight, survival, growth rate and carcass conformation, but evidence for early or mid-pregnancy 

impacts are extremely scarce. This may be due to a genuine lack of impact, but could equally be 

related to the dearth of research in this area. 

Recommendations for research: In comparison to sheep, there is a scarcity of data on beef 

cattle responses to pregnancy nutrition. There is a need for a more comprehensive assessment 

of the impacts of early and mid-gestation nutritional treatments on calf birth weight and survival. 

The variability between different studies currently makes it hard to reach firm conclusions on the 

potential impacts for producers without further study.  
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7.1.2.2. Carcass traits: Few studies report impacts of prenatal nutritional treatments on carcass 

traits except for evidence of larger individual muscle fibres in underfed steers (Long et al., 2010), 

and a tendency for greater fat in the carcass, greater marbling scores and better grading scores 

from animals protein supplemented in late gestation (Larson et al., 2009). A greater muscle area 

has also been reported in offspring resulting from pregnancies where cows were offered high 

dietary intakes in mid gestation (Micke et al., 2010b).  

 

7.1.2.3 Appetite regulation (Section 4.3.3): The very few studies in cattle that have addressed 

appetite or feed intake suggest there are no impacts of birth weight or early growth rate on 

appetite. 

 

7.1.2.4. Welfare traits (Section 3.2.1): There are almost no studies of the impact of prenatal 

nutrition on subsequent calf behaviour but some evidence exists for negative impacts of 

undernutrition on calf serum immunoglobulin-G (IgG) at 48 hours old (Houghton et al., 1990; 

McGee et al., 2006), and positive impacts of dam crude protein intake and IgG at 36 hours old 

(Blecha et al., 1981), which may have been partially mediated by calf-sucking behaviour.  

Epidemiological studies in Australia have also shown some evidence of maternal feed restriction 

caused by drought on progeny health: drought experienced five months before birth was 

associated with an increased incidence of congenital chondrodystrophy of unknown origin (White 

et al., 2010b). 

Take home messages: The impacts of nutrition in pregnancy on welfare traits in beef cattle are 

virtually unknown as almost no studies have considered suitable outcome measures. The 

evidence that does exist supports positive benefits for calves of good maternal gestational nutrition 

in promoting calf health after birth. The existence of relationships between maternal pregnancy 

nutrition and welfare traits in other animals, and the potential exposure of calves to nutritional 

restriction in utero (see below) does suggest that calf responses will be affected by prenatal 

undernutrition.   

Recommendations for research: For most beef producers a planned reduction in cow body 

condition over the winter prior to spring calving is the norm. The impact of this reduction during 

an important period of fetal calf development is uncertain. A more pressing issue is the relatively 

high prevalence of very low body condition, as revealed in recent on-farm research (Defra project 

AW0509: 12% of all observed cows were observed to be Very Lean; 32.4% of observed farms 

have ≥10% of lean cows). Further research into the relationship between body condition and 

offspring outcomes in beef production systems would help clarify the extent to which poor dam 

body condition, or loss of maternal body condition over winter, contributes to offspring health, 

growth and profitability. A more specific issue relating to feeding is temporary feed restriction after 

weaning. A recent survey of UK beef farmers (Defra project AW0509) found that 20% of farms 

fed cows on a restricted diet for more than two days after weaning). Such an acute feed restriction 

may have impacts on the nutritional supply received by the fetus, although it is unknown how such 

sudden yet short-term dietary restrictions affects fetal development. 

 

7.1.2.5 Offspring fertility (Section 5.1.2): Data on the impacts of nutrition on cattle fertility is patchy 

and incomplete but suggest that pregnancy rate in beef and dairy cows may be impaired by slow 
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early growth rates (Wilkins et al., 2006; Brickell et al., 2009). Under nutrition during pregnancy 

may reduce the ovarian reserve of eggs (there is a tentative association with fertility) and advance 

the onset of reproductive senescence, although this will be of less relevance to commercial 

producers.  

Take home messages: Unfortunately current knowledge of the impacts of prenatal nutrition on 

any aspect of subsequent calf outcomes is incomplete. The available data suggest that calves 

that grow slowly in early life are likely to have reduced productivity in terms of the number of 

calves they themselves produce. However, whether this is related to epigenetic factors, or early 

management, is not clear. 

Recommendations for research: There is a need for research in this area to more completely 

understand the impact of current feed management strategies on future fertility, and whether 

altered nutrition in pregnancy could have relevant production outcomes. 

 

7.2. Behaviour and stress 

7.2.1. Sheep   

7.2.1.1. Lamb birth weight and survival (Section 3.2.1): From the few studies that have considered 

whether maternal gestational stress influences lamb birth weight or subsequent growth, the 

emerging picture suggests that psychological stress (i.e. isolation, transport, exposure to dogs, 

aversive handling) experienced during late gestation increases lamb birth weight and/or weaning 

weight. However, studies that attempt to mimic maternal stress through the administration of 

glucocorticoids in late pregnancy have the opposite effect and reduce lamb birth weight (Moss et 

al., 2001; Miller et al., 2009). Furthermore, our very recent research has shown that mid-pregnancy 

stress, induced by aversive handling, in goats results in reduced placental transport capacity and 

increased fetal mortality (Baxter, Hall, Zanella and Dwyer, unpublished).     

Take-home messages: The possibility to increase lamb birth weight through the use of maternal 

stress in pregnancy needs to be approached with caution, particularly as the mechanisms 

underpinning this effect are unknown. Furthermore, the potential to reduce litter size through fetal 

absorption or abortion from gestational stress, as has been shown in rodents, is a significant risk. 

Thus advice to farmers to reduce stress in pregnancy remains most appropriate at the present 

time.    

Recommendations for research: Our knowledge of the impact of relevant psychological 

stressors on fetal growth, development and survival is extremely sparse. However, the rodent, 

primate and human literature demonstrates that these factors can have a very significant and 

detrimental impact on offspring outcomes. There is a need for research that considers the impact 

of relevant stressors (such as factors relating to housing, stocking density, handling etc.) on 

production outcomes.  

 

7.2.1.2. Carcass traits and 7.2.1.3. Appetite regulation: No research exists that attempts to link 

carcass traits or appetite regulation with exposure to prenatal stress in sheep. Studies in the rodent 

and human literature suggest that early life exposure to stress can alter appetite and anhedonic 

responses (i.e. reduced seeking of pleasurable stimuli). Additionally, in the human literature it has 

been proposed that maternal stress in pregnancy affects offspring body composition (Entringer et 
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al., 2012) and in rodents prenatal or early postnatal stress has been shown to increase offspring 

adiposity (Purcell et al., 2011; Haley et al., 2013). However, whether this is also true of farm 

animals is completely unknown. 

Take-home messages: At present it is not possible to provide guidance on whether prenatal 

stress will impact on body composition or appetite regulation in sheep. That these effects have 

been reported in rodents and humans suggest this is a possibility but no data in farm animals 

exist.    

Recommendations for research: Our knowledge in this area is almost non-existent and, as with 

section 7.2.1.1, a programme of work, particularly focussing on production-relevant stressors and 

outcomes measures in sheep and cattle, is required. 

 

7.2.1.4. Welfare traits (Sections 3.2.2 and 3.2.3): As above reaching a definitive conclusion on 

the impact of pregnancy stress on welfare outcomes is hampered by the low number of studies 

and variation in stress paradigms and outcome measures. In general, most studies report altered 

behavioural responsiveness in the offspring of ewes subjected to some form of psychological 

stress in late pregnancy (e.g. isolation, transport, exposure to dogs, aversive handling). Whereas 

some studies might be suggestive of increased reactivity to normal handling as part of routine 

husbandry (e.g. Erhard et al., 2004), others just report effects of prenatal stress which may have 

no practical or welfare impact on the animal. However, lambs born to ewes that were cold-stressed 

(i.e. ewes shorn and exposed to 6 ºC) during the last 2 weeks of pregnancy were better able to 

mount a metabolic response to cold challenge after birth than those born to control ewes or those 

exposed to higher temperatures in utero (26 ºC; Slee and Stott, 1986). This suggests that there 

may be some beneficial impacts to offspring of some forms of maternal stress. Finally, a single 

study has investigated the impact of maternal disease in pregnancy (modelled using endotoxin 

challenge; Fisher et al., 2010). When lambs were tested at 5 or 18 months, female offspring of 

challenged ewes had a reduced febrile response to the endotoxin, although the longer term health 

impacts of maternal infection are not clear. 

Take-home messages: The available data suggest that stress to the pregnant mother can result 

in altered behaviour in offspring, and some studies suggest increased stress reactivity. Whether 

these changes are negative, neutral or positive for welfare and/or practical sheep handling have 

not been determined. At present, the best advice would be to reduce maternal exposure to stress 

and disease in pregnancy, as this does result in altered offspring responses which could potentially 

be detrimental for health and welfare. Research is currently underway to investigate the impact of 

housing management on offspring development, which may help form more definitive conclusions.      

Recommendations for research: As with other sections in 7.2.1, our knowledge of the impacts 

of maternal stress or disease on offspring is inadequate, in particular with regard to husbandry-

relevant stressors and outcome measures. However, increased intensification of production, in 

some areas, means that the impacts of housing, stocking density, human handling and social 

stress on ewes and their offspring is urgently needed to develop suitable housing environments 

for sheep. The impact of maternal health status on subsequent lamb disease susceptibility is also 

required, although this might be best directed to the research councils (e.g. BBSRC) in the first 

instance.      
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7.2.1.5. Offspring fertility (Section 5): No studies have investigated the impact of psychological 

stress on fertility in sheep. In the rodent literature there is some evidence of impaired fertility (e.g. 

reduced testicular weight and apoptosis) in male offspring whose mothers were subjected to 

restraint in late pregnancy (Chen Cárdenas et al., 2013), and in female offspring whose mothers 

were given exogenous glucocorticoids in late pregnancy (Piffer and Pereira, 2004). Thus, it 

remains a possibility that stress can reduce male and female fertility in sheep too. 

Take-home messages: At present it is not possible to provide any guidance on whether prenatal 

stress will impact on fertility in sheep. That these effects have been reported in rodents suggest 

this is a possibility but no data in farm animals exist.    

Recommendations for research: Our knowledge in this area is almost non-existent and, as with 

other sections in 7.2.1, a programme of work, particularly focussing on production-relevant 

stressors and outcome measures in sheep and cattle, is required. 

 

7.2.2 Cattle 

There has been so little work in this area that all impacts are considered together here. 

7.2.2.1 Offspring outcomes: The only study to investigate the impact of maternal psychological 

stress in pregnant cattle found that transportation stress in mid-pregnancy increased calf birth 

weight, and also caused an increased stress response in the offspring (Lay et al., 1997).  

Limited evidence of an impact of other more physical forms of stress (e.g. heat, cold, disease) 

also exist. Cold stress through exposure to winter weather (Andreoli et al., 1988) or to heat stress 

in beef and dairy cattle (Collier et al., 1982; Tao and Dahl, 2013) reduce the birth weight of calves. 

For beef calves such an effect would represent a risk to survival, and also could have detrimental 

effects on performance through to slaughter. Heat stress can also affect offspring immune function 

(Tao et al., 2012), which may impact on later disease susceptibility. Various studies have 

highlighted the negative impact of disease state during pregnancy on offspring health outcomes 

(Loyacano et al., 2002; Lundborg et al., 2003; Lents et al., 2008). 

7.2.2.2 Potential but unexplored prenatal impacts on offspring:  Weaning stress is an interesting 

example of a maternal stressor in cattle that could be investigated from a prenatal perspective.  

Although much of the research focus has been on the stress for the calf, the dam also experienced 

an acute stress response in reaction to calf removal (Lefcourt and Elsasser, 1995; Lynch et al., 

2010; Ungerfeld et al., 2011).  As mentioned in section 7.1.2.5, weaning also often involves 

temporary feed restriction for the cow, and this could increase weaning stress through experiences 

of hunger. More generally, the impact of the social environment during pregnancy on progeny 

performance has not been studied in cattle. Research in other species, however, has clearly 

demonstrated that social stress can be a particularly potent form of challenge to animals. Spring 

calving gestating beef cows are generally housed for around six months over the winter, and this 

period may be a source of social stress for some cows. 

Finally, much of the fetal programming literature has tended to focus on negative outcomes for 

progeny. There are, however, also opportunities to increase offspring health, welfare and 

production by supplementing prenatal conditions. For beef cattle, one possible area of 

investigation is whether the provision of grooming brushes for housed cows has a beneficial impact 

on their progeny. A recent dairy cow study found that provision of a mechanical grooming brush 

before calving increased the time that cows spent licking their newborn calf (Newby et al., 2012). 
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Take home message: Very little work has investigated non-nutritional stressors in cattle during 

gestation, and the possibility of prenatal stress effects as a consequence of various aspects of 

cow management has been largely overlooked. However, research conducted does at least 

demonstrate that negative effects of maternal cow status during pregnancy can affect offspring in 

ways that are important for their health, welfare and production. Disease also represents a possibly 

commercially relevant challenge to beef production, which could have impacts on prenatal 

development. Accurate and up-to-date prevalence information on cattle disease is generally 

lacking. Whilst minimisation of disease in breeding stock already forms part of best practice 

management, the additional impact of disease on progeny performance could provide additional 

incentives to farmers to devote resources to disease control. For instance, a full appraisal of the 

economic impact of disease should include performance deficits in progeny. This may currently 

be a hidden cost of various disease states in suckler cows.  

Research recommendations: The limited findings available (summarised by (Arnott et al., 2012)) 

suggest that future work should be targeted at areas of normal management that are under farmer 

control, and which represent the highest risk of negative prenatal stress effects. In many cases, 

calf outcomes could be added to research projects relating to cows, as a way of adding value and 

maximising the information gained. Research is also required to identify whether aspects of 

housing (such as high stocking density, social mixing, or reduced space to feed), or the presence 

of highly aggressive individuals in a group, could generate social stress in cows, and subsequently 

whether this affects their offspring.  

The potential positive benefits of providing positive stimuli for pregnant mothers (in both cattle and 

sheep) suggests that future research could consider ways to improve animal performance by such 

means, in addition to identifying areas of possible negative outcomes which farmers should avoid.  

 

7.3. Breeding technologies 

The impact of advanced breeding technologies in cattle greatly surpasses that in sheep. This is 

best exemplified for artificial insemination which is used in around 20% of the global population of 

cattle and buffalo (see Section 6). Here in the UK, recent developments in the production of sex-

sorted semen offer the realistic prospect of establishing the much heralded single-sexed once-

bred heifer system (SSBH; Sinclair and Webb, 2005), long-recognised as being the most efficient 

means of producing beef; with predicted efficiencies of food utilisation approaching that of pig-

meat production (Taylor et al., 1985). The principal barrier to the successful uptake of this and 

other advanced breeding technologies lies in the variable but generally poor levels of reproductive 

management on commercial farms. For example, pundits frequently quote pregnancy rates 

following fixed-time AI of between 40 and 50% in cattle and blame these meagre results on the 

technology but, as can be clearly seen from Figure 7.1, pregnancy rates in excess of 70% are 

achievable under good systems of husbandry. Furthermore, whilst there is considerable scope to 

improve systems for in vitro production (IVP) of both cattle and sheep embryos in a manner that 

would enhance pregnancy rates following transfer, the very fact that the transfer of IVP embryos 

leads to greater pregnancy rates than can be achieved by either natural mating or AI in regions of 

the world where cattle encounter heat stress (e.g. Stewart et al., 2011), highlights the importance 

of cow (i.e. donor/recipient) management. Identifying and modifying the management factors that 

underlie differences in the successful use of advanced breeding technologies both within and 

between farms will be of great future benefit to the industry.     
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Figure 7.1.  Pregnancy rates (determined by ultrasound between Days 69 and 87 of gestation) 

following a standard oestrous synchronisation and AI protocol (involving the same technicians) in 

323 crossbred beef cows across 15 commercial farms (data derived from (Sinclair and Broadbent, 

1996)). Mean pregnancy rates for top (black), average (blue) and bottom (red) third herds were 

70%, 47% and 29% respectively.   

 

7.3.1. ‘Large-offspring syndrome’ (LOS)  

This phenomenon was first reported in cattle and later in sheep, but there is evidence of related 

phenomena in mice and other model species, as well as in humans (Section 6). Currently, the 

main issues following ET pertain to early pregnancy losses and obstetrical complications 

associated birth weight and extended gestations. There are no systematic, long-term follow-up 

studies in beef cattle and sheep to indicate effects (either positive or negative) on adult offspring 

health and productivity. Some of the imprinted genes known to be affected by LOS, however, are 

polymorphic and associated with traits of commercial importance (Section 6.3), and so this merits 

further investigation. The few reports of LOS in recent years may reflect improvements in systems 

of IVP (that now generally don’t include somatic support cells and serum), but equally may reflect 

the lack of funding and research activity in this area, and the relatively low level of commercial 

activity in sheep and taurine cattle in Europe and North America (Figure 7.2). 

A similar situation exists with respective to reproductive cloning. In dairy cows autologous somatic-

cell nuclear transfer (SCNT) has been shown to significantly increase the efficiency of bovine 

cloning leading to higher pregnancy rates and fewer developmental anomalies (Yang et al., 2006). 

This procedure has never been explored in either beef cattle or sheep, nor has autologous 

embryonic-cell nuclear transfer been assessed in any species. In theory, this technique could be 

as efficient as standard IVP. It could, therefore, be used in contemporary breeding schemes to 

improve the efficiency of IVP of sexed embryos destined for biopsy and genomic evaluation prior 

to transfer.   
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Figure 7.2. Number of bovine in vitro produced (IVP) embryos transferred between 2000 and 2011 

in Europe, North and South America (IETS, 2012). During this decade the number of IVP embryos 

transferred globally quadrupled. In 2011 an estimated (conservative) 374,000 IVP embryos were 

transferred of which 86% were in South America (mostly Brazil), 6% in North America and 3% in 

Europe. There were virtually no IVP embryos transferred in the UK.  

 

Take home message: Barriers to the increased use of advanced reproductive technologies by 

both the beef and sheep sectors of the livestock industry arise primarily as a consequence of their 

perceived low levels of efficiency (i.e. pregnancy rates) and associated costs. However, IVP offers 

a number of advantages over multiple ovulation and embryo transfer (MOET) including increased 

numbers of transferrable embryos (i.e. OPU/IVP produces 12-times more embryos per year than 

AI (assuming one embryo/one calf), and 3-times more embryos than MOET). The use of sexed 

semen for AI in nulliparous, let alone multiparous, cows is not without its challenges (DeJarnette 

et al., 2008, Mallory et al., 2013). This is particularly so for reverse-sorted sexed semen (Morotti 

et al., 2014). In contrast, sex-sorted and reverse-sorted sexed semen could be used to greater 

effect in the laboratory to produce sexed embryos for subsequent transfer. Furthermore, these 

embryos can be biopsied for genomic evaluation and to simultaneously confirm sex. Such a 

scheme, sponsored by the TSB and involving the University of Nottingham, has recently been 

initiated in the UK.  

Variable pregnancy outcomes are more likely to arise as a consequence of poor egg/embryo donor 

and recipient management, rather than suboptimal laboratory procedures per se (although there 

is scope for improvement here also). Key aspects of donor/recipient management that affect 

pregnancy outcomes include animal handling facilities, cow/ewe nutrition, oestrous 

synchronisation and ovarian stimulation, and heat detection. The few reports of LOS in recent 

years should not lull industry into a false sense of security. Systems (both on-farm and nationally) 

should be put in place to record pregnancy outcomes, including obstetrical complications and 

neonatal mortality, following embryo transfer. That said, reference to Figure 7.2 indicates the 
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extent to which Europe (and in particular the UK) languishes behind South America (and 

particularly Brazil) in the use of these technologies and the advantages they offer.   

Research recommendations: In the context of beef cattle and sheep breeding/genetic 

improvement in the UK, there is considerable merit in producing two separate but related 

contemporary reviews on (a) the costs and benefits of advanced reproduction technologies (ARTs) 

in livestock improvement within the UK and (b) technical challenges for their successful use. Such 

articles would help guide future direction, including research, in these fields but would also help 

devise the framework needed to consider the application of ART outside genetic improvement 

programmes – for example their use in establishment and running of SSBH systems, or in 

conventional beef herds and sheep flocks. Such articles might culminate in the establishment of 

blueprints and technical guidelines for the successful management of egg/embryo donors and 

AI/embryo transfer recipients.  

There is a need to develop improved systems for gamete/embryo donor and recipient 

management to enhance pregnancy rates following AI or embryo transfer. Such studies would 

investigate nutritional management, underlying fertility, synchronisation and stimulation protocols.   

There are a number of structural and legislative reasons for why ARTs have not been adopted by 

the cattle and sheep industries in the UK to the extent that they have elsewhere, and in the longer 

term these need to be addressed. However, important genetic differences exist between Bos 

indicus and Bos taurus cattle which mean that Brazilian operators enjoy much greater success 

when it comes to egg collection, zygote culture and embryo transfer using standard protocols. An 

understanding of these genetic differences would be of great benefit to beef and dairy cattle fertility 

and breeding in the UK.  
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